Wave propagation patterns for the (2+1)-dimensional modified complex KdV system via new extended direct algebra method

DOI: https://doi.org/10.33003/jobasr

Ghazali Yusuf

Jamilu Sabiu

Ibrahim Sani Ibrahim

Ado Balili

Abstract
In this article, we derive various exact solutions and patterns for the complex modified Korteweg–De Vries system of equation (cmKdV) with a generalized innovative extended direct algebra method. The Korteweg-De Vries system exhibits the scientific dynamics of water particles at the surface and beyond the surface level. The system also has applications in ferromagnetic materials, nonlinear optics, and solitons theory. The innovative direct algebra method is applied to obtain dark, multiple, singular, breather and bright wave patterns. This method also provides staggering wave solutions for the complex modified Kortweg-De Vries system in the form of hyperbolic and trigonometric func- tions. These recovered solutions for the considered model and are more efficient, concise and general than the extant ones. The wave patterns are properly explained with 2-D and 3-D graphs to elucidate wave behaviour for some selected solutions derived for the system. Lastly, the solutions in this work will greatly advance various fields of application of the Kortweg-De Vries equation like optical fibres, ferromagnetic materials, nonlinear optics, signal processing, water waves, plasma physics, soliton theory, string theory and other contemporary sciences.
References
[1] Sabi’u, J., Das, P. K., Pashrashid, A., & Rezazadeh, H. (2022). Exact solitary optical wave solutions and modulational instability of the truncated Ω-fractional Lakshamanan–Porsezian–Daniel model with Kerr, parabolic, and anti-cubic nonlinear laws. Optical and Quantum Electronics, 54(5), 269. [2] Tao, G., Sabi’u, J., Nestor, S., El-Shiekh, R. M., Akinyemi, L., Az-Zo’bi, E., & Betchewe, G. (2022). Dynamics of a new class of solitary wave structures in telecommunications systems via a (2+ 1)-dimensional nonlinear transmission line. Modern Physics Letters B, 36(19), 2150596. [3] Yesmakhanova, K., Shaikhova, G., Bekova, G., & Myrzakulov, R. (2017, December). Darboux transformation and soliton solution for the (2+ 1)-dimensional complex modified Korteweg-de Vries equations. In Journal of Physics: Conference Series (Vol. 936, No. 1, p. 012045). IOP Publishing. [4] Yuan, F., Zhu, X., & Wang, Y. (2020). Deformed solitons of a typical set of (2+ 1)–dimensional complex modified Korteweg–de Vries equations. International Journal of Applied Mathematics and Computer Science, 30(2), 337-350. [5] Yuan, F., & Jiang, Y. (2020). Periodic solutions of the (2+ 1)-dimensional complex modified Korteweg-de Vries equation. Modern Physics Letters B, 34(18), 2050202. [6] Yuan, F. (2021). The order-n breather and degenerate breather solutions of the (2+ 1)-dimensional cmKdV equations. International Journal of Modern Physics B, 35(04), 2150053. [7] Ibrahim, I. S., Sabi’u, J., Gambo, Y. Y. U., Rezapour, S., & Inc, M. (2024). Dynamic soliton solutions for the modified complex Korteweg-de Vries system. Optical and Quantum Electronics, 56(6), 954.. https://doi.org/10.1007/s11082-024-06821-w Shaikhova, G., Kutum, B., & Myrzakulov, R. (2022). Periodic traveling wave, bright and dark soliton solutions of the (2+ 1)-dimensional complex modified Korteweg-de Vries system of equations by using three different methods. AIMS Mathematics, 7(10), 18948-18970. [9] Muhammad, U. A., Sabi’u, J., Salahshour, S., & Rezazadeh, H. (2024). Soliton solutions of (2+ 1) complex modified Korteweg–de Vries system using improved Sardar method. Optical and Quantum Electronics, 56(5), 802. https://doi.org/10.1007/s11082-024-06591-5 [10] Sabi’u, J., Jibril, A., & Gadu, A. M. (2019). New exact solution for the (3+ 1) conformable space–time fractional modified Korteweg–de- Vries equations via Sine-Cosine Method. Journal of Taibah University for Science, 13(1), 91-95. [11] Alquran, M. (2022). New interesting optical solutions to the quadratic–cubic Schrodinger equation by using the Kudryashov-expansion method and the updated rational sine–cosine functions. Optical and Quantum Electronics, 54(10), 666. [12] Az-Zo’bi, E. A., AlZoubi, W. A., Akinyemi, L., S¸enol, M., Alsaraireh, I. W., & Mamat, M. (2021). Abundant closed-form solitons for time- fractional integro–differential equation in fluid dynamics. Optical and Quantum Electronics, 53, 1-16. http://dx.doi.org/10.1007/s11082- 021-02782-6. [13] Akinyemi, L., S¸enol, M., & Iyiola, O. S. (2021). Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method. Mathematics and Computers in Simulation, 182, 211-233. http://dx.doi.org/10.1016/j.matcom.2020.10.017. [14] Senol, M., Akinyemi, L., Ata, A., & Iyiola, O. S. (2021). Approximate and generalized solutions of conformable type Coudrey–Dodd–Gibbon–Sawada–Kotera equation. International Journal of Modern Physics B, 35(02), 2150021. [15] Khater, M. M., Akinyemi, L., Elagan, S. K., El-Shorbagy, M. A., Alfalqi, S. H., Alzaidi, J. F., & Alshehri, N. A. (2021). Bright–dark soliton waves’ dynamics in pseudo spherical surfaces through the nonlinear Kaup–Kupershmidt equation. Symmetry, 13(6), 963. http://dx.doi.org/10.3390/sym13060963. [16] Az-Zo’bi, E. A., Alzoubi, W. A., Akinyemi, L., S¸enol, M., & Masaedeh, B. S. (2021). A variety of wave amplitudes for the conformable fractional (2+ 1)-dimensional Ito equation. Modern Physics Letters B, 35(15), 2150254. http://dx.doi.org/10.1142/S0217984921502547. [17] Zayed, E. M., Gepreel, K. A., Shohib, R. M., Alngar, M. E., & Yıldırım, Y. (2021). Optical solitons for the perturbed Biswas-Milovic equation with Kudryashov’s law of refractive index by the unified auxiliary equation method. Optik, 230, 166286. [18] Houwe, A., Yakada, S., Abbagari, S., Saliou, Y., Inc, M., & Doka, S. Y. (2021). Survey of third-and fourth-order dispersions including ellipticity angle in birefringent fibers on W-shaped soliton solutions and modulation instability analysis. The European Physical Journal Plus, 136, 1-27. [19] Inc, M., Miah, M., Akher Chowdhury, S. A., Rezazadeh, H., Akinlar, M. A., & Chu, Y. M. (2020). New exact solutions for the Kaup- Kupershmidt equation. Aims Math, 5(6), 6726-6738. [20] Sabi’u, J., Rezazadeh, H., Tariq, H., & Bekir, A. (2019). Optical solitons for the two forms of Biswas–Arshed equation. Modern Physics Letters B, 33(25), 1950308. [21] Rezazadeh, H., Sabi’u, J., Jena, R. M., & Chakraverty, S. (2020). New optical soliton solutions for Triki–Biswas model by new extended direct algebraic method. Modern Physics Letters B, 34(supp01), 2150023. [22] Sabi’u, J., Sirisubtawee, S., & Inc, M. (2024). Optical soliton solutions for the Chavy-Waddy-Kolokolnikov model for bacterial colonies using two improved methods. Journal of Applied Mathematics and Computing, 1-24. [23] Li, J., Xu, C., & Lu, J. (2024). The exact solutions to the generalized (2+ 1)-dimensional nonlinear wave equation. Results in Physics, 58, 107506. [24] Mubaraki, A. M., Nuruddeen, R. I., Ali, K. K., & G´omez-Aguilar, J. F. (2024). Additional solitonic and other analytical solutions for the higher-order Boussinesq-Burgers equation. Optical and Quantum Electronics, 56(2), 165. [25] Bekir, A., Shehata, M. S., & Zahran, E. H. (2024). Comparison between the new exact and numerical solutions of the Mikhailov–Novikov–Wang equation. Numerical Methods for Partial Differential Equations, 40(2), e22775. [26] Kong, Y., & Geng, J. (2024). Exact Periodic Wave Solutions for the Perturbed Boussinesq Equation with Power Law Nonlinearity. Mathematics, 12(13), 1958. Sherriffe, D., Behera, D., & Nagarani, P. (2024). Different forms for exact traveling wave solutions of unstable and hyperbolic nonlinear Schr¨odinger equations. International Journal of Modern Physics B, 38(09), 2450131. Mirzazadeh, M., Akinyemi, L., S¸enol, M., & Hosseini, K. (2021). A variety of solitons to the sixth-order dispersive (3+ 1)-dimensional nonlinear time-fractional Schr¨odinger equation with cubic-quintic-septic nonlinearities. Optik, 241, 166318. http://dx.doi.org/10.1016/j.ijleo.2021.166318. [29] Zayed, E. M., Shohib, R. M., Gepreel, K. A., El-Horbaty, M. M., & Alngar, M. E. (2021). Cubic–quartic optical soliton per- turbation Biswas–Milovic equation with Kudryashov’s law of refractive index using two integration methods. Optik, 239, 166871. http://dx.doi.org/10.1016/j.ijleo.2021.166871. [30] ur Rahman, M., Karaca, Y., Sun, M., Baleanu, D., & Alfwzan, W. F. (2024). Complex behaviors and various soliton profiles of (2+ 1)-dimensional complex modified Korteweg-de-Vries Equation. Optical and Quantum Electronics, 56(5), 878. [31] H. Rezazadeh, New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik, 167(2018), 218-227.
PDF