Unraveling the Mysteries of Supermassive Black Holes: Formation, Growth Mechanisms, and Their Role in Galaxy Evolution
DOI: https://doi.org/10.33003/jobasr
Mu’allim Yakubu
Vwavware Oruaode Jude
Ubaidullahi Yakubu
Ohwofosirai Adrain
Abstract
Supermassive black holes (SMBHs) with masses of millions to billions of solar masses are central to our understanding of galaxy evolution and the cosmos. This review synthesizes current research on the formation, fueling, and growth mechanisms of SMBHs across cosmic time. We discuss theoretical frameworks regarding SMBH formation, including models such as direct collapse from primordial gas clouds and the hierarchical merging of stellar-mass black holes through accretion and mergers. The direct collapse model suggests that massive primordial gas clouds can collapse directly into SMBHs without forming stars, while the merger model posits that SMBHs grow through the merging of smaller black holes during galaxy collisions.We analyze the impacts of both major and minor galactic mergers on SMBH growth, particularly their role in triggering gas inflows and sustained accretion episodes. The review elaborates on specific fueling processes, such as cold gas inflows, which provide continuous material for accretion, and feedback mechanisms that regulate SMBH growth by stimulating or inhibiting gas inflow. For example, radiative feedback from active galactic nuclei can heat surrounding gas, preventing it from falling into the black hole, highlighting the balance between these processes in SMBH evolution.We aim to provide a comprehensive overview of the pathways through which SMBHs have evolved from the early Universe to their present state. This review highlights open questions in the field, particularly regarding the rapid growth of SMBHs in the early universe, and suggests future research directions.
References
Aggarwal, Y. (2021). Insights into the origins and growth of seeds of supermassive black holes.
arXiv:2112.06338. https://doi.org/10.48550/arXiv.2112.06338
Alexander, D.M., and Hickox, R.C. (2011). What drives the growth of black holes. New Astronomy Reviews, 56, 93-121.
Arguelles, C.R., Boshkayev, K., Krut, A., Nurbakhyt, G., Rueda, J.A., Ruffini, R., Uribe-Su'arez, J.D., andYunis, R. (2023). On the growth of supermassive black holes formed from the gravitational collapse of fermionic dark matter cores.
Avilez-López, A.A., Luís, L., Bernal-Marín, T., and Matos, T. (2017). On the Possibility that Ultra-Light Boson halos host and form Super-massive Black Holes. arXiv: General Relativity and Quantum Cosmology.
Barai, P., and Pino, E.G. (2018). Supermassive and Intermediate-Mass Black Hole Growth at Galaxy Centers and resulting Feedback using Cosmological Simulations. Proceedings of International Conference on Black Holes as Cosmic Batteries: UHECRs and Multimessenger Astronomy — PoS(BHCB2018).
Begelman, M.C. (2003). AGN feedback mechanisms. https://library.fiveable.me/key-terms/galaxies-universe/agn feedback-mechanisms.
Bogovalov, S. (2019). Physics of “Cold” Disk Accretion onto Black Holes Driven by Magnetized Winds. Galaxies.
Bromley, J., Somerville, R.S., and Fabian, A.C. (2003). High-redshift quasars and the supermassive black hole mass budget: constraints on quasar formation models. Monthly Notices of the Royal Astronomical Society, 350, 456-472.
Chatterjee, S., and Chowdhury, R.K. (2019). Cosmological evolution of supermassive black holes. WOMEN IN PHYSICS: 6th IUPAP International Conference on Women in Physics. https://doi.org/10.1063/1.5110135
Ciotti, L. (2008). Co-evolution of elliptical galaxies and their central black holes. Clues from their scaling laws. arXiv: Astrophysics, 032, 1-69.Doi: 10.017/S1743921310005508
Civano, F., Cappelluti, N., Hickox, R.C., Canning, R.E., Aird, J., Ajello, M., Allen, S., Bañados, E., Blecha, L., Brandt, W.N., Brusa, M., Carrera, F.J., Cappi, M., Comastri, A., Dolag, K., Donahue, M., Elvis, M., Fabbiano, G., Fornasini, F.M., Gandhi, P., Georgakakis, A., Holley-Bockelmann, K., Koekemoer, A.M., Goulding, A.D., Jones, M.L., Laha, S., LaMassa, S.M., Lanzuisi, G., Lanz, L., Mantz, A.B., Marchesi, S., Mezcua, M., Mingo, B., Nandra, K., Stern, D.K., Swartz, D.A., Tremblay, G.R., Tzanavaris, P., Vikhlinin, A., Vito, F., and Wilkes, B.J. (2019). Cosmic evolution of supermassive black holes: A view into the next two decades. arXiv: Astrophysics of Galaxies. DOI: 10.48550/arXiv.1903.11091
Colpi, M. (2014). Massive Binary Black Holes in Galactic Nuclei and Their Path to Coalescence. Space Science Reviews, 183, 189 - 221. DOI:10.1007/s11214-014-0067-1
D’Orazio, D.J., andCharisi, M. (2023). Observational Signatures of Supermassive Black Hole Binaries.
https://doi.org/10.48550/arXiv.2310.16896
Djorgovski, S.G., Volonteri, M., Springel, V., Bromm, V., andMeylan, G. (2008). The origins and the early evolution of quasars and supermassive black holes. arXiv: Astrophysics, 340-367. DOI: 10.1142/9789812834300_0018
Ferrarese, L., and Ford, H.C. (2004). Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research. Space Science Reviews, 116, 523-624. DOI: 10.1007/s1121-005-3947-6
Frazer, C.C., andHeitsch, F. (2019). Gas inflow and star formation near supermassive black holes: the role of nuclear activity. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stz2083
Giustini, M., andProga, D. (2019). A global view of the inner accretion and ejection flow around super massive black holes. Astronomy and Astrophysics. https://doi.org/10.1051/0004-6361/201833810
Glover, S.C. (2015). Simulating the formation of massive seed black holes in the early Universe – II. Impact of rate coefficient uncertainties. Monthly Notices of the Royal Astronomical Society, 453, 2901-2918. DOI: 10.1093/mnras/stv1059
Haiman, Z. (2012). The Formation of the First Massive Black Holes. arXiv: Cosmology and Nongalactic Astrophysics. DOI: 10.1007/978-3-642-32362-1_6
Harrison, C.M. (2013). The impact of AGN on their host galaxies. Proceedings of the International Astronomical Union, 9, 284 - 290. DOI: 10.1017/S1743921314004098
Hickox, R.C., LaMassa, S.M., Silverman, J.D., andKolodzig, A. (2015). Host galaxies and large-scale structures of active galactic nuclei. Proceedings of the International Astronomical Union, 11, 113 - 123. DOI: 101017/S1743921316004592
Hu, J., Shen, Y., Lou, Y., and Zhang, S. (2005). Forming supermassive black holes by accreting dark and baryon matter. Monthly Notices of the Royal Astronomical Society, 365, 345-351.
Inayoshi, K., Visbal, E., andHaiman, Z. (2019). The Assembly of the First Massive Black Holes. arXiv: Astrophysics of Galaxies. DOI: 10.48550/arXIV.1911.05791
Izumi, T., Wada, K., Imanishi, M., Nakanishi, K., Kohno, K., Kudoh, Y., Kawamuro, T., Baba, S., Matsumoto, N., Fujita, Y., andTristram, K.R. (2023). Supermassive black hole feeding and feedback observed on subparsec scales. Science, 382, 554 - 559. DOI: https://doi.org/10.48550/arXiv.2305.03993
Jiang 姜燕, Y.., Stone, J.M., and Davis, S.W. (2017). Super-Eddington Accretion Disks around Supermassive Black Holes. The Astrophysical Journal, 880. DOI: 10.3847/1538-4357/AB29ff
Johnson, J.L., andHaardt, F. (2016). The Early Growth of the First Black Holes. Publications of the Astronomical Society of Australia, 33. DOI: https://doi.org/10.1017/pasa.2016.4
Johnson, J.L., Whalen, D.J., Li, H., andHolz, D.E. (2012). SUPERMASSIVE SEEDS FOR SUPERMASSIVE BLACK HOLES. The Astrophysical Journal, 771.
Komossa, S., Baker, J.G., and Liu, F.K. (2015). Growth of Supermassive Black Holes, Galaxy Mergers and Supermassive Binary Black Holes. Proceedings of the International Astronomical Union, 11, 292 - 298. DOI: https://doi.org/10.1017/S1743921316005378
Kroupa, P., Šubr, L., Jeřábková, T., and Wang, L. (2020). Very high redshift quasars and the rapid emergence of super-massive black holes. Monthly Notices of the Royal Astronomical Society, 498, 5652-5683. https://doi.org/10.1093/mnras/staa2276
Kryukova, E., DePorzio, N., and Moulton, T. (2022). Probing the Properties of Supermassive Black Holes. Journal of Student Research. DOI: 10.47611/jsrhs.v11i1.2698
Lapi, A., Raimundo, S.I., Aversa, R., Cai, Z., Negrello, M., Celotti, A., Zotti, G.D., Sissa, L.D., Trieste, Italy., Vergata, U.D., Romé, Univ., 3., Xiamen, China., Inafoapd, Padova, INAFOABrera, Merate, &Infnts (2013). THE COEVOLUTION OF SUPERMASSIVE BLACK HOLES AND MASSIVE GALAXIES AT HIGH REDSHIFT. The Astrophysical Journal, 782.
Latif, M.A., and Ferrara, A. (2016). Formation of Supermassive Black Hole Seeds. Publications of the Astronomical Society of Australia, 33. DOI: 10.1017/PASA.2016.41
Levine, R. (2010). Large Dynamic Range Simulations of Galaxies Hosting Supermassive Black Holes. Proceedings of the International Astronomical Union, 6, 153 - 159.
Liempi, M., Almonacid, L.I., Schleicher, D.R., andEscala, A. (2023). Origin of supermassive black holes: predictions for the black hole population. DOI: 10.1017/S174392131101756X
Lin, C., Chen, K., and Hwang, C. (2022). Rapid Growth of Galactic Supermassive Black Holes through Accreting Giant Molecular Clouds during Major Mergers of Their Host Galaxies. The Astrophysical Journal, 952. DOI: 10.3847/1538-4357/ACD841
Macchetto, F.D. (1999). Supermassive Black Holes and Galaxy Morphology. Astrophysics and Space Science, 269-270, 269-291.
Maio, U.D. (2019). Early black-hole seeds in the first billion years. Proceedings of MultifrequencyBehaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019). https://doi.org/10.48550/arXiv.1908.04823
Matteo, T.D., Anglés-Alcázar, D., and Shankar, F. (2023). Massive black holes in galactic nuclei: Theory and Simulations.
Mayer, L., andBonoli, S. (2018). The route to massive black hole formation via merger-driven direct collapse: a review. Reports on Progress in Physics, 82.
Mayer, L., Kazantzidis, S., andEscala, A. (2008). Formation of Nuclear Disks and Supermassive Black Hole Binaries in Multi-Scale Hydrodynamical Galaxy Mergers. arXiv: Astrophysics.
Merloni, A., Heinz, S. (2008). A synthesis model for AGN evolution: supermassive black holes growth and feedback modes. Monthly Notices of the Royal Astronomical Society, 388, 1011-1030.
Mezcua, M., Pacucci, F., Suh, H., Siudek, M., and Natarajan, P. (2024). Overmassive Black Holes at Cosmic Noon: Linking the Local and the High-redshift Universe. The Astrophysical Journal Letters, 966.
Mezcua, M., Pacucci, F., Suh, H., Siudek, M., and Natarajan, P. (2024). Overmassive Black Holes at Cosmic Noon: Linking the Local and the High-redshift Universe. The Astrophysical Journal Letters, 966.
Morganti, R. (2017). The Many Routes to AGN Feedback. arXiv: Astrophysics of Galaxies.
Naab, T., andOstriker, J.P. (2016). Theoretical Challenges in Galaxy Formation. Annual Review of Astronomy and Astrophysics, 55, 59-109.
Narayan, R., andQuataert, E. (2005). Black Hole Accretion. Science, 307, 77 - 80.
Natarajan, P. (2011). The formation and evolution of massive black hole seeds in the early Universe. arXiv: Cosmology and Nongalactic Astrophysics.
Natarajan, P., Ricarte, A., Baldassare, V.F., Bellovary, J.M., Bender, P.L., Berti, E., Cappelluti, N., Ferrara, A., Greene, J.E., Haiman, Z., Holley-Bockelmann, K., Mueller, G., Pacucci, F., Shoemaker, D.H., Shoemaker, D.M., Tremmel, M., Urry, C.M., Vikhlinin, A., andVolonteri, M. (2019). Disentangling nature from nurture: tracing the origin of seed black holes. arXiv: High Energy Astrophysical Phenomena.
Oosterloo, T.A., Morganti, R., and Murthy, S.M. (2023). Closing the feedback-feeding loop of the radio galaxy 3C 84. Nature Astronomy.
Pacucci, F., and Loeb, A. (2024). The Redshift Evolution of the M •–M ⋆ Relation for JWST’s Supermassive Black Holes at z > 4. The Astrophysical Journal, 964.
Reines, A.E., andComastri, A. (2016). Observational Signatures of High-Redshift Quasars and Local Relics of Black Hole Seeds. Publications of the Astronomical Society of Australia, 33.
Rosa, A.D., Vignali, C., Bogdanovi'c, T., Capelo, P.R., Charisi, M., Dotti, M., Husemann, B., Lusso, E., Lusso, E., Lusso, E., Mayer, L., Paragi, Z., Runnoe, J.C., Runnoe, J.C., Sesana, A., Sesana, A., Steinborn, L.K., Bianchi, S., Colpi, M., Valle, L.D., Frey, S., Gabányi, K.É., Giustini, M., Guainazzi, M., Haiman, Z., Ruiz, N.H., Herrero-Illana, R., Herrero-Illana, R., Iwasawa, K., Komossa, S., Lena, D., Lena, D., Loiseau, N., Pérez-Torres, M.A., Piconcelli, E., andVolonteri, M. (2019). The quest for dual and binary supermassive black holes: A multi-messenger view. New Astronomy Reviews.
Schawinski, K. (2012). Black Hole -- Galaxy Co-evolution. arXiv: Cosmology and Nongalactic Astrophysics.
Sesana, A. (2011). A Practical Guide to the Massive Black Hole Cosmic History. Advances in Astronomy, 2012, 805402.
Shankar, F. (2009). The demography of supermassive black holes: Growing monsters at the heart of galaxies. New Astronomy Reviews, 53, 57-77.
Silk, J., Begelman, M.C., Norman, C., Nusser, A., and Wyse, R.F. (2024). Which Came First: Supermassive Black Holes or Galaxies? Insights from JWST. The Astrophysical Journal Letters, 961.
Smethurst, R.J., Beckmann, R.S., Simmons, B.D., Coil, A.L., Devriendt, J., Dubois, Y., Garland, I.L., Lintott, C.J., Martin, G., andPeirani, S. (2022). Evidence for non-merger co-evolution of galaxies and their supermassive black holes. Monthly Notices of the Royal Astronomical Society.
Smith, A., andBromm, V. (2019). Supermassive black holes in the early universe. Contemporary Physics, 60, 111 - 126.
Somerville, R.S., Hopkins, P.F., Cox, T.J., Robertson, B.E., andHernquist, L.E. (2008). A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 391, 481-506.
Storchi-Bergmann, T., andSchnorr-Müller, A. (2019). Observational constraints on the feeding of supermassive black holes. Nature Astronomy, 3, 48-61.
Tanaka, T.L. (2014). Driving the growth of the earliest supermassive black holes with major mergers of host galaxies. Classical and Quantum Gravity, 31.
Trakhtenbrot, B. (2019). What do observations tell us about the highest-redshift supermassive black holes? Proceedings of the International Astronomical Union, 15, 261 - 275.
Tremmel, M., Karcher, M.D., Governato, F., Volonteri, M., Quinn, T.R., Pontzen, A., Anderson, L., andBellovary, J.M. (2016). The Romulus cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs. Monthly Notices of the Royal Astronomical Society, 470, 1121-1139.
Trinca, A., Schneider, R., Valiante, R., Graziani, L., Zappacosta, L., and Shankar, F. (2022). The low-end of the black hole mass function at cosmic dawn.
Tripodi, R., Feruglio, C., Fiore, F.D., Zappacosta, L., Piconcelli, E., Bischetti, M., Bongiorno, A., Carniani, S., Civano, F., Chen, C., Cristiani, S., Cupani, G., Mascia, F.D., D’Odorico, V., Fan, X., Ferrara, A., Gallerani, S., Ginolfi, M., Maiolino, R., Mainieri, V., Marconi, A., Saccheo, I., Salvestrini, F., Tortosa, A., andValiante, R. (2024). HYPERION. Coevolution of supermassive black holes and galaxies at z>6 and the build-up of massive galaxies. Astronomy and Astrophysics.
Valiante, R., Schneider, R., Volonteri, M., andOmukai, K. (2016). From the first stars to the first black holes. Monthly Notices of the Royal Astronomical Society, 457, 3356-3371.
Valiante, R., Schneider, R., andVolonteri, M. (2016). Editorial: Understanding the Growth of the First Supermassive Black Holes. Publications of the Astronomical Society of Australia, 33.
Volonteri, M. (2006). Evolution of Supermassive Black Holes.
https://doi.org/10.48550/arXiv.astro-ph/0602630
Zhang, T., Guo, Q., Qu, Y., andGao, L. (2021). The role of mergers and gas accretion in black hole growth and galaxy evolution. Research in Astronomy and Astrophysics, 21.
Zheng, X. (2012). The Co-Evolution of Supermassive Black Holes and Galaxies: Observational Constraints. Proceedings of the International Astronomical Union, 8, 109 - 116.
PDF