Tuning ZnO with Al and B Doping for Efficient Solar Cell Windows

DOI: https://doi.org/10.33003/jobasr

Ewansiha Kingsley Osarumwense

Yabagi Jibrin Alhaji

Ladan Muhammed Bello

Nmaya Mohammed Mohammed

Kimpa Mohammed Isah

Abstract
This study investigates the structural properties of ZnO, ZnO:Al, ZnO:B, and ZnO:Al:B nanoparticles synthesized via the sol-gel method for potential application as window layers in solar cells. X-ray diffraction (XRD) analysis reveals the crystalline structure, phase composition, crystallite size, and lattice parameters of the synthesized materials. Doping with aluminum (Al) and boron (B) induces significant changes in the lattice parameters, crystallinity, and crystallite size. The XRD patterns demonstrate a hexagonal wurtzite structure for all samples, with shifts in peak positions and broadening indicating lattice distortions and defects. The findings provide valuable insights into the effects of Al and B doping on the structural properties of ZnO nanoparticles, contributing to the optimization of ZnO-based materials for photovoltaic applications.
References
Al-Farsi, L., Souier, T. M., Al-Hinai, M., Myint, M. T., Kyaw, H. H., Widatallah, H. M., & Al-Abri, M. (2022). pH Controlled Nanostructure and Optical Properties of ZnO and Al-doped ZnO nanorod arrays grown by microwave-assisted hydrothermal method. Nanomaterials, 12(21), 3735. Al-Qadasy, S. (2024). Effect of boron-doping and annealing on the structure, morphological and optical properties of zno films prepared by spray pyrolysis method. Physica Scripta, 99(6), 0659a3. Alsaad, A. M., Ahmad, A. A., Qattan, I. A., Al-Bataineh, Q. M., & Albataineh, Z. (2020). Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped zno and group iii elements (B, al, ga, and in)-doped zno thin films. Crystals, 10(4). https://doi.org/10.3390/cryst10040252 Amjad, M., Khan, M. I., Alwadai, N., Irfan, M., Ikram-Ul-haq, Albalawi, H., Almuqrin, A. H., Almoneef, M. M., & Iqbal, M. (2022). Photovoltaic Properties of ZnO Films Co-Doped with Mn and La to Enhance Solar Cell Efficiency. Nanomaterials, 12(7). https://doi.org/10.3390/nano12071057 Ashour, A., Assem, E., & Shaaban, E. (2022). Investigation of dilute aluminum doped zinc oxide thin films: structural and morphological properties for varies applicationss. Journal of Ovonic Research, 18(5), 699-711. Badgujar, A. C., Yadav, B. S., Jha, G. K., & Dhage, S. R. (2022). Room Temperature Sputtered Aluminum-Doped ZnO Thin Film Transparent Electrode for Application in Solar Cells and for Low-Band-Gap Optoelectronic Devices. ACS Omega, 7(16), 14203–14210. https://doi.org/10.1021/acsomega.2c00830 Bahtoun, H., Hadjeris, L., Iaiche, S., & Ounis, T. (2023). Effect of zno nanoparticles salt precursors on structural, morphological, optical and mb photocatalytic properties using hydrothermal synthesis. Journal of Nano Research, 77, 87-104. Bouacheria, M. A., Djelloul, A., Adnane, M., Larbah, Y., & Benharrat, L. (2022). Characteristics of ZnO and Al Doped ZnO Thin Films Prepared by Sol Gel Method for Solar Cell Applications. Journal of Inorganic and Organometallic Polymers and Materials, 32(7), 2737–2747. https://doi.org/10.1007/s10904-022-02313-0 Chavan, G. T., Kim, Y., Khokhar, M. Q., Hussain, S. Q., Cho, E. C., Yi, J., Ahmad, Z., Rosaiah, P., & Jeon, C. W. (2023). A Brief Review of Transparent Conducting Oxides (TCO): The Influence of Different Deposition Techniques on the Efficiency of Solar Cells. Nanomaterials, 13(7). https://doi.org/10.3390/nano13071226 Ellmer, K. (2000). Resistivity of polycrystalline ZnO films: current status and physical limit. Journal of Physics D: Applied Physics, 33(4), R17-R32. Furhan, & Ramesan, M. T. (2022). Enhanced dielectric properties, thermal stability and ammonia sensing performance of poly (diphenylamine)/zinc oxide nanocomposites via one step polymerization. Journal of Applied Polymer Science, 139(38), e52913. Gultepe, O., & Atay, F. (2022). Al and B co-doped ZnO samples as an alternative to ITO for transparent electronics applications. Journal of Materials Science: Materials in Electronics, 33(18), 15039–15053. https://doi.org/10.1007/s10854-022-08421-4 Hunize, C., Joseph, M., & Murali, K. (2022). Synthesis and dielectric characterization of nd doped srtio<sub>3</sub> ceramics for energy storage applications. Key Engineering Materials, 928, 113- Jang, S., Karade, V. C., Jang, J. S., Jo, E., Shim, H., Kim, S. G., Patil, K., Gour, K. S., & Kim, J. H. (2023). Achieving over 10 device efficiency in Cu2ZnSn(S,Se)4 thin-film solar cells with modifications of window layer properties. Journal of Alloys and Compounds, 930, 167302. https://doi.org/10.1016/j.jallcom.2022.167302 Ibrahim, N. B., Al-Shomar, S. M., & Ahmad, S. H. (2013). Effect of annealing temperature on the structural and optical properties of nanocrystalline ZnO thin films prepared by sol-gel method. Sains Malaysiana, 42(12), 1781–1786. Ijaz, M. (2024). Microstructural, morphological and magnetic behaviour of al3+ replaced bafe11.5co0.5o19 hexaferrites synthesized via sol-gel auto combustion route. Physica Scripta, 99(5), 055959 Jang, S., Karade, V. C., Jang, J. S., Jo, E., Shim, H., Kim, S. G., Patil, K., Gour, K. S., & Kim, J. H. (2023). Achieving over 10 device efficiency in Cu2ZnSn(S,Se)4 thin-film solar cells with modifications of window layer properties. Journal of Alloys and Compounds, 930, 167302. https://doi.org/10.1016/j.jallcom.2022.167302 Khalid, A., Ahmad, P., Muhammad, S., Khan, A., Khandaker, M.U., Alam, M.M., Asim, M., Din, I.U., Iqbal, J., Rehman, I.U. and Razzaq, Z., 2022. Synthesis of boron-doped zinc oxide nanosheets by using phyllanthus emblica leaf extract: a sustainable environmental application. Frontiers in Chemistry, 10, p.930620. Khan, Z. R., Khan, M. S., Zulfequar, M., & Shahid Khan, M. (2011). Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Materials Sciences and Applications, 02(05), 340–345. https://doi.org/10.4236/msa.2011.25044 Khantoul, A. R., Sebais, M., Rahal, B., Boudine, B., & Halimi, O. (2018). Structural and optical properties of zno and co doped ZnO thin films prepared by sol-gel. Acta Physica Polonica A, 133(1), 114–117. https://doi.org/10.12693/APhysPolA.133.114 Khoreem, S. (2023). Effect of nonmagnetic doping on dielectric properties and initial permeability of ba-ni ferrite nanoparticles by virtue of Zn2+ ions. Advances in Materials Science and Engineering, 2023, 1-10. Kim, H., Kim, D., Kim, Y., Lee, S., & Lee, J. (2013). Effects of Al doping on the electrical and optical properties of ZnO thin films. Journal of Alloys and Compounds, 574, 532-536. Lee, J., Lee, S., Kim, H., Kim, D., & Kim, Y. (2014). Enhanced UV-Vis transmittance and electrical conductivity of ZnO:Al thin films by B doping. Journal of Materials Science: Materials in Electronics, 25(10), 4336-4342. Lhimr, S., Bouhlassa, S., & Ammary, B. (2021). Influence of calcination temperature on size, morphology and optical properties of zno/c composite synthesized by a colloidal method. Indonesian Journal of Chemistry, 21(3), 537–545. https://doi.org/10.22146/ijc.56309 Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. K. (2018). Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871–12934. https://doi.org/10.1039/c8nr02278j Musleh, H., AlDahoudi, N., Zayed, H., Shaat, S., Tamous, H. M., Shurrab, N., Issa, A., & Asad, J. (2018). Synthesis and Characterization of Zno Nanoparticles Using Hydrothermal and Sol-Gel Techniques for Dye-Sensitized Solar Cells. Journal of University of Babylon for Engineering Sciences, 26(9), 256–267. https://doi.org/10.29196/jubes.v26i9.1736 Naser, A., Hachim, D., & Abed, Q. (2022). A review of Effect the Zinc Oxide deposition on Crystalline Silicon Solar Cells. https://doi.org/10.4108/eai.7-9-2021.2314810 Oeba, D. and Mosiori, C. (2022). Electrical and optical properties of boron doped zinc oxide thin-film deposited by metal-organic chemical vapour deposition for photovoltaic application. Physical Science International Journal, 48-55. Özel, K. and Atilgan, A. (2023). Systematic investigation on the synergistic impact of gallium (ga)-boron (b) co-doping on the features of zno films. Gazi University Journal of Science Part A: Engineering and Innovation, 10(4), 442-451. Pandey, V., Singh, N., & Haque, F. Z. (2017). Enhancement in Structural and Optical Properties of Boron Doped ZnO Nanostructures Synthesized by Simple Aqueous Solution Growth Technique. Journal of Advanced Physics, 6(3), 358–366. https://doi.org/10.1166/jap.2017.1333 Potter, D. B., Powell, M. J., Parkin, I. P., & Carmalt, C. J. (2018). Aluminium/gallium, indium/gallium, and aluminium/indium co-doped ZnO thin films deposited: Via aerosol assisted CVD. Journal of Materials Chemistry C, 6(3), 588–597. https://doi.org/10.1039/c7tc04003b Raship, N. A., Tawil, S. N. M., Nayan, N., Ismail, K., Bakri, A. S., & Mohkhter, F. (2022). Investigation on the structural and electrical properties of zno thin films co-doped with rare earth gd and al prepared by co-sputtering method. Materials Science Forum, 1053, 143-147. Regmi, G., Rijal, S., & Velumani, S. (2023). Aluminum-doped zinc oxide ( AZO ) ultra-thin films deposited by radio frequency sputtering for flexible Cu ( In , Ga ) Se 2 solar cells. Memories - Materials, Devices, Circuits and Systems, 5(June), 100064. https://doi.org/10.1016/j.memori.2023.100064 Saleem, M., Fang, L., Wakeel, A., Rashad, M., & Kong, C. Y. (2012). Simple Preparation and Characterization of Nano-Crystalline Zinc Oxide Thin Films by Sol-Gel Method on Glass Substrate. World Journal of Condensed Matter Physics, 02(01), 10–15. https://doi.org/10.4236/wjcmp.2012.21002 Saliha I., Mujdat C. and Yasemin C. (2010) Sn doping effects on the electro-optical properties of sol gel derived transparent ZnO films, Applied Surface Science, Volume 256(23), 7204-7210, ISSN 0169-4332 Shaba, E. Y., Tijani, J. O., Jacob, J. O., & Suleiman, M. A. T. (2023). Effect of mixing ratios of SiO2 nanoparticles synthesized from metakaolin on the physicochemical properties of ZnO/SiO2 nanocomposites. Nano-Structures & Nano-Objects, 35, 101003. Speaks, D. T. (2020). Effect of concentration, aging, and annealing on sol gel ZnO and Al-doped ZnO thin films. International Journal of Mechanical and Materials Engineering, 15(1). https://doi.org/10.1186/s40712-019-0113-6 Stroescu, H., Nicolescu, M., Mitrea, D., Tenea, E., Atkinson, I., Anastasescu, M., Calderon-Moreno, J. M., & Gartner, M. (2023). Effect of Al Incorporation on the Structural and Optical Properties of Sol–Gel AZO Thin Films. Materials, 16(9). https://doi.org/10.3390/ma16093329 Sugihartono, I., Tan, S.T., Arkundato, A., Fahdiran, R., Isnaeni, I., Handoko, E., Budi, S. and Budi, A.S., 2023. The Effect of Al-Cu Co-Dopants on Morphology, Structure, and Optical Properties of ZnO Nanostructures. Materials Research, 26, p.e20220499. Tatjana S., Konstantinos K., andJohn D. K ( 2022) Box-Behnken design to optimise 3D printing parameters in applications for fashion products, International Journal of Experimental Design and Process Optimisation 7(1):49-61 Urakawa, S. (2024). Sputter deposition of zno–aln pseudo-binary amorphous alloys with tunable band gaps in the deep ultraviolet region. Materials Research Express, 11(6), 065901. Üzar, N. (2024). Enhancement of structural, optical, electrical, optoelectronic and thermoelectric properties of ZnO thin film via Ni doping and Ni-B co-doping. Physica Scripta, 99(7), 075995. Yüksel, P., Hardal, G., & Kınacı, B. (2022). Influence of v2o5 and b2o3 addition on the sintering behaviour and physical properties of zno ceramics. Processing and Application of Ceramics, 16(1), 48-54. Zhang, J., Tse, K., Wong, M., Zhang, Y., & Zhu, J. (2016). A brief review of co-doping. Frontiers of Physics, 11(6). https://doi.org/10.1007/s11467-016-0577-2 Zhao, X., Jheng, J., Chou, N., Wang, F., & Yang, C. (2023). Synthesis of zno nanoflower arrays on a protrusion sapphire substrate and application of al-decorated zno nanoflower matrix in gas sensors. Sensors, 23(12), 5629.
PDF