Sol-Gel Derived Al:B:ZnO Thin Films: UV-Vis and PL Characterization for Solar Cell Applications

DOI: https://doi.org/10.33003/jobasr

Yabagi Jibrin Alhaji

Ewansiha Kingsley Osarumwense

Ladan Muhammed Bello

Nmaya Mohammed Mohammed

Kimpa Mohammed Isah

Abstract
This study investigates the effects of co-doping ZnO thin films with aluminum (Al) and boron (B) on their optical properties for enhanced solar cell efficiency. Using the Sol-gel synthesis process, we deposited ZnO thin films with varying Al and B precursor concentrations (1-4 wt%) on glass substrate via dip-coating. UV-visible and photoluminescence (PL) spectroscopy characterized the films' optical characteristics. The results show that co-doped ZnO films exhibit high transparency (up to 91%) and tunable band gaps (3.1-3.48 eV). Notably, the PL intensity (1.094) is significantly enhanced compared to singly doped ZnO:Al and ZnO:B, indicating optimized charge carrier dynamics. These findings demonstrate the potential of Al and B co-doped ZnO thin films for improved solar cell performance.
References
Abhishek, B., Shubhada, B., RaviKumar, M., Nandkishor, D., Shankar, B. (2023). Study of UV-Visible Spectroscopy. International Journal of Research Publication and Reviews, 04(04),1140–1146. https://doi.org/10.55248/gengpi.2023.4149 Akhta, M. S., Riaz, S., Noor, R., & Naseem, S. (2013). Optical and structural properties of ZnO thin films for solar cell applications. Advanced Science Letters, 19(3), 834–838. https://doi.org/10.1166/asl.2013.4822 Alsaad, A. M., Ahmad, A. A., Qattan, I. A., Al-Bataineh, Q. M., & Albataineh, Z. (2020). Structural, optoelectrical, linear, and nonlinear optical characterizations of dip-synthesized undoped zno and group iii elements (B, al, ga, and in)-doped zno thin films. Crystals, 10(4). https://doi.org/10.3390/cryst10040252 Amakali, T., Daniel, L. S., Uahengo, V., Dzade, N. Y., & Leeuw, N. H. De. (2020). Structural and Optical Properties of ZnO Thin Films Sol – Gel Methods. Crystals, 10(2), 132. Asvarov, A. S., Abduev, A. K., Akhmedov, A. K., & Kanevsky, V. M. (2022). On the Effect of the Co-Introduction of Al and Ga Impurities on the Electrical Performance of Transparent Conductive ZnO-Based Thin Films. Materials, 15(17), 5862. Bin Rafiq, M. K. S., Amin, N., Alharbi, H. F., Luqman, M., Ayob, A., Alharthi, Y. S., Alharthi, N. H., Bais, B., & Akhtaruzzaman, M. (2020). WS2: A New Window Layer Material for Solar Cell Application. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-57596-5 Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by Sol-Gel Method: Synthesis and Application. Advances in Materials Science and Engineering, 2021. https://doi.org/10.1155/2021/5102014 Bouacheria, M. A., Djelloul, A., Adnane, M., Larbah, Y., & Benharrat, L. (2022). Characteristics of ZnO and Al Doped ZnO Thin Films Prepared by Sol Gel Method for Solar Cell Applications. Journal of Inorganic and Organometallic Polymers and Materials, 32(7), 2737–2747. https://doi.org/10.1007/s10904-022-02313-0 Chavan, G. T., Kim, Y., Khokhar, M. Q., Hussain, S. Q., Cho, E. C., Yi, J., Ahmad, Z., Rosaiah, P., & Jeon, C. W. (2023). A Brief Review of Transparent Conducting Oxides (TCO): The Influence of Different Deposition Techniques on the Efficiency of Solar Cells. Nanomaterials, 13(7). https://doi.org/10.3390/nano13071226 Chen, X., Wang, Z., Li, M., Liu, Y., & Shen, D. (2015). Enhanced transparency and conductivity of ZnO:Al:B thin films. Journal of Materials Science: Materials in Electronics, 26(10), 8336-8342. Doroody, C., Rahman, K. S., Kiong, T. S., & Amin, N. (2022). Optoelectrical impact of alternative window layer composition in CdTe thin film solar cells performance. Solar Energy, 233(February), 523–530. https://doi.org/10.1016/j.solener.2022.01.049 Faremi, A. A., Akindadelo, A. T., Adekoya, M. A., Adebayo, A. J., Salau, A. O., Oluyamo, S. S., & Olubambi, P. A. (2022). Engineering of window layer cadmium sulphide and zinc sulphide thin films for solar cell applications. Results in Engineering, 16(July), 100622. https://doi.org/10.1016/j.rineng.2022.100622 Gfroerer, T. H. (2006). Photoluminescence in Analysis of Surfaces and Interfaces. Encyclopedia of Analytical Chemistry, February. https://doi.org/10.1002/9780470027318.a2510 Govindasamy, G., Murugasen, P., & Sagadevan, S. (2016). Investigations on the Synthesis, Optical and Electrical Properties of TiO2 Thin Films by Chemical Bath Deposition (CBD) method. Materials Research, 19(2), 413–419. https://doi.org/10.1590/1980-5373-MR-2015-0411 Gultepe, O., & Atay, F. (2022). Al and B co-doped ZnO samples as an alternative to ITO for transparent electronics applications. Journal of Materials Science: Materials in Electronics, 33(18), 15039–15053. https://doi.org/10.1007/s10854-022-08421-4 Lee, J., Lee, S., Kim, H., Kim, D., and Kim, Y. (2016). Synergistic effects of Al and B co- doping on the electrical and optical properties of ZnO thin films. Journal of Alloys and Compounds, 688, 101-106. Lee, J., Lee, S., Kim, H., Kim, D., & Kim, Y. (2018). Improved stability of ZnO:Al:B thin films under environmental stress. Journal of Materials Science: Materials in Electronics, 29(10), 8336-8342. Li, Y., Cheng, M., Jungstedt, E., Xu, B., Sun, L., & Berglund, L. (2019). Optically Transparent Wood Substrate for Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 7(6), 6061–6067. https://doi.org/10.1021/acssuschemeng.8b06248 Khan, Z. R., Khan, M. S., Zulfequar, M., & Shahid Khan, M. (2011). Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Materials Sciences and Applications, 02(05), 340–345. https://doi.org/10.4236/msa.2011.25044 Khalid, A., Ahmad, P., Muhammad, S., Khan, A., Khandaker, M.U., Alam, M.M., Asim, M., Din, I.U., Iqbal, J., Rehman, I.U. and Razzaq, Z., 2022. Synthesis of boron-doped zinc oxide nanosheets by using phyllanthus emblica leaf extract: a sustainable environmental application. Frontiers in Chemistry, 10, p.930620. Kim, H., Kim, D., Kim, Y., Lee, S., & Lee, J. (2017). Tunable bandgap of ZnO:Al:B thin films by adjusting the Al and B concentrations. Journal of Alloys and Compounds, 722, 811-816. Koralli, P., Varol, S. F., Mousdis, G., Mouzakis, D. E., Merdan, Z., & Kompitsas, M. (2022). Comparative Studies of Undoped/Al-Doped/In-Doped ZnO Transparent Conducting Oxide Thin Films in Optoelectronic Applications. Chemosensors, 10(5). https://doi.org/10.3390/chemosensors10050162 Mahmood, A., & Naeem, A. (2017). Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications. Recent Applications in Sol-Gel Synthesis. https://doi.org/10.5772/67857 Makuła, P., Pacia, M., & Macyk, W. (2018). How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV−Vis Spectra. Journal of Physical Chemistry Letters, 9(23), 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892 Musleh, H., AlDahoudi, N., Zayed, H., Shaat, S., Tamous, H. M., Shurrab, N., Issa, A., & Asad, J. (2018). Synthesis and Characterization of Zno Nanoparticles Using Hydrothermal and Sol-Gel Techniques for Dye-Sensitized Solar Cells. Journal of University of Babylon for Engineering Sciences, 26(9), 256–267. https://doi.org/10.29196/jubes.v26i9.1736 Nagayasamy, N., Gandhimathination, S., & Veerasamy, V. (2013). The Effect of ZnO Thin Film and Its Structural and Optical Properties Prepared by Sol-Gel Spin Coating Method. Open Journal of Metal, 03(02), 8–11. https://doi.org/10.4236/ojmetal.2013.32a2002 Orori, M. C. (2023). Properties of Zinc Oxide thin layers for Photovoltaic Applications. 7(3), 1–9. https://doi.org/10.19080/JOJMS.2023.07.555716 Pastuszak, J., & Węgierek, P. (2022). Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials, 15(16). https://doi.org/10.3390/ma15165542 Rakhshani, A. E., Makdisi, Y. and Ramazaniyan, H. A. (2009) "Effects of Al doping on the structural and optical properties of ZnO thin films," Journal of Alloys and Compounds, 484(2), 434-438. Regmi, G., Rijal, S., & Velumani, S. (2023). Aluminum-doped zinc oxide ( AZO ) ultra-thin films deposited by radio frequency sputtering for flexible Cu ( In , Ga ) Se 2 solar cells. Memories - Materials, Devices, Circuits and Systems, 5(June), 100064. https://doi.org/10.1016/j.memori.2023.100064 Saleem, M., Fang, L., Wakeel, A., Rashad, M., & Kong, C. Y. (2012). Simple Preparation and Characterization of Nano-Crystalline Zinc Oxide Thin Films by Sol-Gel Method on Glass Substrate. World Journal of Condensed Matter Physics, 02(01), 10–15. https://doi.org/10.4236/wjcmp.2012.21002 Salwan K. Al-Ani. (2008). Methods of Determining The Refractive Index of Thin Solid Films. J. of Appl. Phys., 4(1), 17–23. Sharmin, A., Tabassum, S., Bashar, M. S., & Mahmood, Z. H. (2019). Depositions and characterization of sol–gel processed Al-doped ZnO (AZO) as transparent conducting oxide (TCO) for solar cell application. Journal of Theoretical and Applied Physics, 13(2), 123–132. https://doi.org/10.1007/s40094-019-0329-0 Shweta, K. P., & Thapa, K. B. (2019). Synthesis and characterization of ZnO nano-particles for solar cell application by the cost effective co-precipitation method without any surfactants. AIP Conference Proceedings, 2142 (September). https://doi.org/10.1063/1.5122336 Stroescu, H., Nicolescu, M., Mitrea, D., Tenea, E., Atkinson, I., Anastasescu, M., Calderon-Moreno, J. M., & Gartner, M. (2023). Effect of Al Incorporation on the Structural and Optical Properties of Sol–Gel AZO Thin Films. Materials, 16(9). https://doi.org/10.3390/ma16093329 Tanaka, K., and Kato, M. (2024). Carrier recombination in highly Al doped 4H-SiC: dependence on the injection conditions. Japanese Journal of Applied Physics, 63(1), 011002. Tuan, P. (2023). Reduction of graphene oxide (go) to reduced graphene oxide (rgo) at different hydrothermal temperatures and enhanced photodegradation of zinc oxide/rgo composites. Physica Scripta, 99(1), 015912. Üzar, N. (2024). Enhancement of structural, optical, electrical, optoelectronic and thermoelectric properties of ZnO thin film via Ni doping and Ni-B co-doping. Physica Scripta, 99(7), 075995. Wang, Z., Zhang, X., Li, G., & Yu, B. (2016). Defect passivation in ZnO:Al:B thin films by post-annealing treatment. Journal of Physics D: Applied Physics, 49(10), 105101 Zhang, J., Liu, H.J., Wang, Z. R. and Ming, N. B.( 2011) "Hydrothermal synthesis of ZnO nanorods and their optical properties," Journal of Crystal Growth, vol. 314(1) 76-80.
PDF