Aqueous Extract of Loranthusmicranthus Linn Leaf Alleviates Cadmium-Induced Testicular Dysfunction in Male Wistar Rats
DOI: https://doi.org/10.33003/jobasr
Ebhohon, S. O.
Edward, U. I.
Akubuiro, P. C.
Amiebenomo, R. A.
Abstract
Cadmium (Cd), a heavy metal and environmental pollutant, induces oxidative stress and testicular dysfunction, severely impairing male fertility. This study evaluated the protective effects of the aqueous extract of Loranthusmicranthus Linn leaf on cadmium-induced testicular dysfunction in male Wistar rats. Phytochemical screening revealed the presence of alkaloids, flavonoids, saponins, tannins, and glycosides, while acute toxicity studies showed an LD50 greater than 5000 mg/kg, indicating its safety.Thirty rats were divided into five groups: control, cadmium-treated, cadmium with low-dose extract (250 mg/kg), cadmium with high-dose extract (500 mg/kg), and cadmium with vitamin E (200 mg/kg). Testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels were analysed, alongside oxidative stress markers (MDA, GSH, SOD, CAT, TAC) and sperm quality parameters. Cadmium exposure significantly (p˂0.05) reduced body and testicular weights, testosterone, luteinizing hormone (LH), and follicle stimulating hormone (FSH) levels, while increasing malondialdehyde (MDA) levels and decreasing antioxidant markers including reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) and sperm quality. Treatment with the high-dose extract significantly (p < 0.05) restored body and testicular weights, hormone levels, antioxidant status, reduced MDA levels, and improved sperm count, motility, and morphology to levels comparable to the control group, similar to the effects of vitamin E. In conclusion, Loranthusmicranthus Linn leaf extract demonstrates potent antioxidant and protective properties against cadmium-induced testicular dysfunction, underscoring its potential as a natural therapeutic agent for managing reproductive toxicity.
References
Abdel-Wahab, A., Hassanin, K. M. A., Mahmoud, A. A., Abdel-Badeea, W. I. E., Abdel-Razik, A.-R. H., Attia, E. Z., Abdelmohsen, U. R., Abdel Aziz, R. L., Najda, A.,
Alanazi, I. S., & et al. (2021). Physiological roles of red carrot methanolic extract and vitamin E to abrogate cadmium-induced oxidative challenge and apoptosis in rat testes: Involvement of the Bax/Bcl-2 ratio. Antioxidants, 10(11), 1653. https://doi.org/10.3390/antiox10111653
Al-Attar, A. M. (2011). Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi Journal of Biological Sciences, 18(1), 63–72. https://doi.org/10.1016/j.sjbs.2010.10.004
Ali, W., Ma, Y., Zhu, J., Zou, H., & Liu, Z. (2022). Mechanisms of cadmium-induced testicular injury: A risk to male fertility. Cells, 11(22), 3601. https://doi.org/10.3390/cells11223601
Alkhedaide, A., Alshehri, Z. S., Sabry, A., Abdel-Ghaffar, T., Soliman, M. M., & Attia, H. (2016). Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Molecular medicine reports, 13(4), 3101–3109. https://doi.org/10.3892/mmr.2016.4928
Arunachalam, K., & Sasidharan, S. P. (2021). General considerations and collection of animals’ blood. In Bioassays in experimental and preclinical pharmacology (pp. 51–55). Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1511-6
Atawodi, S. (2011). Evaluation of the hypoglycaemic, hypolipidemic and antioxidant effects of methanolic extract of “Ata-Ofa” polyherbal tea (A-polyherbal) in alloxan-induced diabetic rats. Drug Invention Today, 3, 270–276.
Ateşşahin, A., Karahan, İ., Türk, G., Gür, S., Yilmaz, S., & Ceribaşi, A. O. (2006). Protective role of lycopene on cisplatin-induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Reproductive Toxicology, 21, 42–47. https://doi.org/10.1016/j.reprotox.2005.05.003
Beytut, E., Yuce, A., Kamiloglu, N. N., & Aksakal, M. (2003). Role of dietary vitamin E in cadmium-induced oxidative damage in rabbit's blood, liver and kidneys. International Journal for Vitamin and Nutrition Research, 73(5), 351–355. https://doi.org/10.1024/0300-9831.73.5.351
Brzóska, M. M., Borowska, S., & Tomczyk, M. (2016). Antioxidants as a potential preventive and therapeutic strategy for cadmium. Current Drug Targets, 17(12), 1350–1384. https://doi.org/10.2174/1389450116666150506114336
Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium toxicity and health effects—A brief summary. Molecules, 28(18), 6620. https://doi.org/10.3390/molecules28186620
Chen, H., Liu, J., Luo, L., Baig, M. U., Kim, J. M., & Zirkin, B. R. (2005). Vitamin E, aging and Leydig cell steroidogenesis. Experimental gerontology, 40(8-9), 728–736. https://doi.org/10.1016/j.exger.2005.06.004
Draper, H., & Hadley, M. (1990). Malondialdehyde determination as an index of lipid peroxidation. Methods in Enzymology, 186, 421–431.
Dutta, S., Sengupta, P., Slama, P., & Roychoudhury, S. (2021). Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction. International journal of molecular sciences, 22(18), 10043. https://doi.org/10.3390/ijms221810043
Ebhohon, S. O., Asoya, E.V., Ezeokeke, C. B. & Okwor, L. O. (2023). Nephroprotective Effects of 16 Aqueous Extract of Loranthusmicranthus Linn Leaf Against Cadmium-Induced Kidney Toxicity in Male Rats. Journal of Basics and Applied Sciences Research (JOBASR), 1(1), 16-26. DOI: https://doi.org/10.33003/jobasr-2023-v1i1-3
Elish, S. E. A., Sanad, F. A., Baky, M. H., Yasin, N. A. E., Temraz, A., & El-Tantawy, W. H. (2022). Ficus natalensis extract alleviates cadmium chloride-induced testicular disruptions in albino rats. Journal of Trace Elements in Medicine and Biology, 70, 126924. https://doi.org/10.1016/j.jtemb.2022.126924
Haouem, S., & El Hani, A. (2013). Effect of Cadmium on Lipid Peroxidation and on Some Antioxidants in the Liver, Kidneys and Testes of Rats Given Diet Containing Cadmium-polluted Radish Bulbs. Journal of toxicologic pathology, 26(4), 359–364. https://doi.org/10.1293/tox.2013-0025
Harborne, J. B. (1984). Phytochemical methods: A guide to modern techniques of plant analysis (2nd ed.). Chapman & Hall.
Hlophe, S., & Bassey, K. (2023). Phytochemical profiling and antioxidant potentials of South African and Nigerian LoranthusmicranthusLinn.: The African mistletoe exposé. Plants, 12(10), 2016. https://doi.org/10.3390/plants12102016
Kaltsas, A. (2023). Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. Medicina, 59(10), 1769. https://doi.org/10.3390/medicina59101769
Khan, M. I., Karima, G., Khan, M. Z., Shin, J. H., & Kim, J. D. (2022). Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells. International Journal of Molecular Sciences, 23(18), 10665. https://doi.org/10.3390/ijms231810665
Kini, R. D., Arun Kumar, N., Anupama, N., Bhagyalakshmi, K., & Shetty, S. B. (2016). Preventive role of vitamin E and vitamin C in combination on cadmium-induced oxidative stress on rat testis. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(4), 1999–2002.
Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of Clinical Pathology, 54(5), 356–361.
Lorke, D. (1983). A new approach to practical acute toxicity testing. Archives of Toxicology, 54(4), 275–287. https://doi.org/10.1007/BF01234480
Lafuente A. (2013). The hypothalamic-pituitary-gonadal axis is target of cadmium toxicity. An update of recent studies and potential therapeutic approaches. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 59, 395–404. https://doi.org/10.1016/j.fct.2013.06.024
Lushchak V. I. (2012). Glutathione homeostasis and functions: potential targets for medical interventions. Journal of amino acids, 2012, 736837. https://doi.org/10.1155/2012/736837
Macáková, K., Afonso, R., Saso, L., &Mladěnka, P. (2019). The influence of alkaloids on oxidative stress and related signaling pathways. Free Radical Biology and Medicine, 134, 429-444. https://doi.org/10.1016/j.freeradbiomed.2018.11.010
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A., ...& Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. Journal of King Saud University – Science, 34(3), 101865. https://doi.org/10.1016/j.jksus.2022.101865
Moghadamtousi, S. Z., Hajrezaei, M., Abdul Kadir, H., & Zandi, K. (2013). LoranthusmicranthusLinn.: Biological activities and phytochemistry. Evidence-Based Complementary and Alternative Medicine, 2013, 273712. https://doi.org/10.1155/2013/273712
National Institutes of Health. (2002). Office of Laboratory Animal Welfare Public Health Service policy on the humane care and use of laboratory animals. NIH.
Nicoletti, M. (2023). The antioxidant activity of mistletoes (Viscum album and other species). Plants, 12(14), 2707. https://doi.org/10.3390/plants12142707
Niki, E. (2015). Evidence for beneficial effects of vitamin E. The Korean Journal of Internal Medicine, 30(5), 571–579. https://doi.org/10.3904/kjim.2015.30.5.571
Marini, H. R., Micali, A., Squadrito, G., Puzzolo, D., Freni, J., Antonuccio, P., &Minutoli, L. (2022). Nutraceuticals: A New Challenge against Cadmium-Induced Testicular Injury. Nutrients, 14(3), 663. https://doi.org/10.3390/nu14030663
Nna, V. U., Ujah, G. A., Mohamed, M., Etim, K. B., Igba, B. O., Augustine, E. R., &Osim, E. E. (2017). Cadmium chloride–induced testicular toxicity in male Wistar rats: Prophylactic effect of quercetin, and assessment of testicular recovery following cadmium chloride withdrawal. Biomedicine & Pharmacotherapy, 94, 109–123. https://doi.org/10.1016/j.biopha.2017.07.087
OECD. (2003). Test No. 423: Acute oral toxicity—Acute toxic class method. In OECD guidelines for the testing of chemicals, Section 4. OECD Publishing.
Onoja, R. I., Chukwudi, C. U., Ugwueze, E. U., & Others. (2021). Effect of Thymus vulgaris leaf extract on cadmium-induced testicular toxicity in rats. Bulletin of the National Research Centre, 45(125). https://doi.org/10.1186/s42269-021-00583-1
PanjehShahin, M. R., Panahi, Z., Dehghani, F., &TalaeiKhouzani, T. (2005). The effects of hydroalcoholic extract of Actinidiachinensis on sperm count and motility, and blood levels of estradiol and testosterone in male rats. Archives of Iranian Medicine, 8(3), 211–216.
Silvestrini, A., Meucci, E., Ricerca, B. M., & Mancini, A. (2023). Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. International journal of molecular sciences, 24(13), 10978. https://doi.org/10.3390/ijms241310978
Sofowora, A. (1993). Medicinal plants and traditional medicine in Africa (2nd ed.). Spectrum Books Ltd.
Soleimani Mehranjani, M., & Taefi, R. (2012). The protective role of vitamin E on the testicular tissue in rats exposed to sodium arsenite during the prenatal stage till sex maturity: A stereological analysis. Iranian journal of reproductive medicine, 10(6), 571–580
Sun, Y., Oberley, W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34(3), 497–500.
Szurpnicka, A., Kowalczuk, A., &Szterk, A. (2020). Biological activity of mistletoe: In vitro and in vivo studies and mechanisms of action. Archives of Pharmacal Research, 43, 593–629. https://doi.org/10.1007/s12272-020-01264-0
Tietze, F. (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Analytical Biochemistry, 27(3), 502–522.
Trease, G. E., & Evans, W. C. (2002). Pharmacognosy (15th ed.). Saunders Publishers.
Unsal, V., Dalkıran, T., Çiçek, M., & Kölükçü, E. (2020). The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: A review. Advanced Pharmaceutical Bulletin, 10(2), 184–202. https://doi.org/10.34172/apb.2020.023
Wang, S., Ren, X., Hu, X., Zhou, L., Zhang, C., & Zhang, M. (2019). Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signalling pathway in TM3 cells, a model of mouse Leydig cells. Toxicology and Applied Pharmacology, 368, 37–48. https://doi.org/10.1016/j.taap.2019.02.012
Wu, X., Guo, X., Wang, H., Zhou, S., Li, L., Chen, X., Wang, G., Liu, J., Ge, H. S., & Ge, R. S. (2017). A brief exposure to cadmium impairs Leydig cell regeneration in the adult rat testis. Scientific reports, 7(1), 6337. https://doi.org/10.1038/s41598-017-06870-0
Zhu, Q., Li, X., & Ge, R. S. (2020). Toxicological effects of cadmium on mammalian testis. Frontiers in Genetics, 11, 527. https://doi.org/10.3389/fgene.2020.00527
Umar, M.A., Sani, B.M., and Suleiman, U. (2022). An Overview of Machine and Deep Learning Technologies Application in Agriculture: Opportunities and Challenges in Nigeria. SLU Journal of Science and Technology.
Uwaoma, P.U., Eleogu, T.F., Okonkwo, F., Farayola, O.A., Kaggwa, S., and Akinoso, A.E. (2024). AI’s Role in Sustainable Business Practices and Environmental Management. International Journal of Research and Scientific Innovation.
Vocaturo, E., Rani, G., Dhaka, V.S., and Zumpano, E. (2023). AI-Driven Agriculture: Opportunities and Challenges. 2023 IEEE International Conference on Big Data (BigData), 3530-3537.
Waidor, T.K. (2019). A Data Mining Framework for Improving Agricultural Production in Nigeria.
Wihartiko, F.D., Nurdiati, S., Buono, A., and Santosa, E. (2021). Agricultural Price Prediction Models: A Systematic Literature Review. Proceedings of the International Conference on Industrial Engineering and Operations Management.
Wit, C.T., and Vries, F.P. (1985). Predictive models in agricultural production. Philosophical Transactions of the Royal Society B, 310, 309-315.
Younas, O., Zeb, M., Khan, and Khan, I. (2020). Artificial Intelligence (AI) As Sustainable Solution for The Agriculture Sector: Findings from Developing Economies.
Zhang, L., Guo, W., Lv, C., Guo, M., Yang, M., Fu, Q., and Liu, X. (2023). Advancements in artificial intelligence technology for improving animal welfare: Current applications and research progress. Animal Research and One Health.
PDF