1H NMR Profiling and Antioxidant Activity of Chloroform, Ethyl Acetate, and Aqueous Fractions of Bauhinia rufescensStem Extract

DOI: https://doi.org/10.33003/jobasr

Mukhtar, M .

Adamu, H. M.

Shibdawa, A. M.

Ajiya, D. A.

Abstract
This study investigates the metabolite profile and antioxidant potential of aqueous, ethyl acetate, and chloroform fractions of Bauhinia rufescens stem extract.The stem bark was extracted using 85% methanol. ¹H Nuclear Magnetic Resonance (NMR) spectroscopy was employed to analyze the metabolites present in each fraction, and antioxidant activity was evaluated using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. The results revealed significant differences in metabolite composition across the fractions, with the aqueous fraction exhibiting the highest antioxidant activity. At a concentration of 1000 µg/mL, the aqueous fraction (AQ) exhibited 94.74 ± 0.58% inhibition, while the ethyl acetate (AE) fraction showed 94.33 ± 0.37%, and the chloroform (AC) fraction exhibited 81.59 ± 0.97%. The antioxidant activity decreased as the concentration reduced, with the aqueous fraction still maintaining the highest activity across other concentrations. A total of 22 metabolites were tentatively identified, including flavonoids, phenolics, and alkaloids, which are known for their bioactive properties. These findings suggest that Bauhinia rufescens extracts, particularly the aqueous fraction, could serve as a potential source of natural antioxidants. Further studies are needed to isolate and characterize the bioactive compounds responsible for the observed effects.
References
Abdel-razakh, H.H.; Gaymary, B.G.; Pan, C.-H.; Hoza, A. S. (2023). Bauhinia rufescens, Ocimumbasilicum and Salvadora persica: A review of their chemical compounds and properties for antimicrobial, antioxidant and cytotoxicity. J. Appl. Biol. Chem, 66, 492–502. Adebo, O. A., & Gabriela Medina-Meza, I. (2020). Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains: A Mini Review. Molecules, 25(4), 927. https://doi.org/10.3390/molecules25040927 Alavi, T., Pazuki, G., & Raisi, A. (2014). Solubility of Fructose in Water-Ethanol and Water-Methanol Mixtures by Using H-Bonding Models. Journal of Food Science, 79(5). https://doi.org/10.1111/1750-3841.12441 Alghamdi, A., Almuqbil, M., Alrofaidi, M. A., Burzangi, A. S., Alshamrani, A. A., Alzahrani, A. R., Kamal, M., Imran, M., Alshehri, S., Mannasaheb, B. A., Alomar, N. F., & Asdaq, S. M. B. (2022). Potential Antioxidant Activity of Apigenin in the Obviating Stress-Mediated Depressive Symptoms of Experimental Mice. Molecules, 27(24), 1–12. https://doi.org/10.3390/molecules27249055 Aliyu, A. B., Ibrahim, M. A., Musa, A. M., Ibrahim, H., Abdulkadir, I. E., & Oyewale, A. O. (2009). Evaluation of antioxidant activity of leave extract of Bauhinia rufescens Lam. (Caesalpiniaceae). In Journal of Medicinal Plants Research (Vol. 3, Issue 8). Arika, W., Kibiti, C. M., Njagi, J. M., & Ngugi, M. P. (2019). In Vitro Antioxidant Properties of Dichloromethanolic Leaf Extract of Gnidia glauca (Fresen) as a Promising Antiobesity Drug. Journal of Evidence-Based Integrative Medicine, 24, 2515690X1988325. https://doi.org/10.1177/2515690X19883258 Arotiba, O., Baker, P., Maoela, M. S., Arotiba, O. A., Baker, P. G. L., Mabusela, W. T., Jahed, N., Songa, E. A., & Iwuoha, E. I. (2009). Electroanalytical Determination of Catechin Flavonoid in Ethyl Acetate Extracts of Medicinal Plants. In Article in International Journal of Electrochemical Science (Vol. 4). www.electrochemsci.org Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E.-M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001 Babalola IT. (2006). Phytochemical and Antimicrobial Studies of Six Medicinal palnts used for the treatment of Leprosy. University of Jos. Bakiri, A., Hubert, J., Reynaud, R., Lanthony, S., Harakat, D., Renault, J. H., & Nuzillard, J. M. (2017). Computer-Aided 13C NMR Chemical Profiling of Crude Natural Extracts without Fractionation. Journal of Natural Products, 80(5), 1387–1396. https://doi.org/10.1021/acs.jnatprod.6b01063 Bangar, S. P., Chaudhary, V., Sharma, N., Bansal, V., Ozogul, F., & Lorenzo, J. M. (2023). Kaempferol: A flavonoid with wider biological activities and its applications. Critical Reviews in Food Science and Nutrition, 63(28), 9580–9604. https://doi.org/10.1080/10408398.2022.2067121 Braca A, Sortine C, P. M. (2002). Antioxidant activity of flavonoids from Licanialicaniae. Journal of Ethnophamacology, 79, 379 381. Farnsworth, N. R. , M. R. W. ,. (1976). Higher plants: the sleeping giant of drug development. American Journal of Pharmaceutical Education, 148, ., 46–52. Gill, L. S. (1992). Ethnomedicinal Uses of Plants in Nigeria. UNIBEN Press. Grzesik, M., Naparło, K., Bartosz, G., & Sadowska-Bartosz, I. (2018). Antioxidant properties of catechins: Comparison with other antioxidants. Food Chemistry, 241, 480–492. https://doi.org/10.1016/j.foodchem.2017.08.117 Halliwell, B. (2011). Free radicals and antioxidants – quo vadis? Trends in Pharmacological Sciences, 32(3), 125–130. https://doi.org/10.1016/j.tips.2010.12.002 Hamidu Usman, Fanna Inna Abdulrahman, Haruna Abdu Kaita, I. Z. K. (2009). Comparative Phytochemical and Antimicrobial Evaluation of Stem Bark Extracts of Bauhinia rufescens Lam ( Caesalpinioideae-Leguminosae ) and Sclerocaryabirrea. Medicinal and Aromatic Plant Science and Biotechnology, 15–20. Humanmetabolome database for 2018. . https://doi.org/10.1093/nar/gkx1089 Ita, P. B., & Offiong, E. E. (2013). Munities in Cross River State, Medicinal Plants used in Traditional Medicine by Rural Com Nigeria. Journal of Health, Medicine and Nursing, 1, 23–29. Kim, H.K., Choi, Y.H., & Verpoorte, R. (2006). Metabolomic analysis of Catharanthus roseus using NMR and principal component analysis. In Plant metabolomics (pp. 261–276). Springer. Maisuthisakul, P., Suttajit, M., & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chemistry, 100(4), 1409–1418. https://doi.org/10.1016/j.foodchem.2005.11.032 Mehta, A. K., Arora, N., Gaur, S. N., & Singh, B. P. (2009). Choline supplementation reduces oxidative stress in mouse model of allergic airway disease. European Journal of Clinical Investigation, 39(10), 934–941. https://doi.org/10.1111/j.1365-2362.2009.02190.x More, G. K., Vervoort, J., Steenkamp, P. A., & Prinsloo, G. (2022). Metabolomic profile of medicinal plants with anti-RVFV activity. Heliyon, 8(2). https://doi.org/10.1016/j.heliyon.2022.e08936 Pantami, H. A., Shaari, K., Bustamam, M. S. A., & Ismail, I. S. (2020). Metabolite Profiling of Different Solvent Extracts of the Microalgae Chlorella vulgaris Via 1H NMR-Based Metabolomics. Current Metabolomics and Systems Biology, 8(1), 61–74. https://doi.org/10.2174/2666338408999200819162931 Patil, D. A. (2011). Ethnomedicine to Modern Medicine: Genesis through Ages. Journal of Experimental Sciences, 2, 25–29. Pianoski, K. E., Turco, J. F., Soares, K. C. N., Mokochinski, J. B., Caetano, I. K., Da Silva, F. R., & Torres, Y. R. (2020). Identification and characterization of bauhinia species by spectroscopic and spectrometric fingerprints identification and characterization of bauhinia species by spectroscopic and spectrometric fingerprints. Revista Virtual de Quimica, 12(5), 1222–1235. https://doi.org/10.21577/1984-6835.20200093 National Center for Biotechnology Information. PubChem Compound Summary for CID. Retrieved from https://pubchem.ncbi.nlm.nih.gov Robert-Jan van, P. J. G. M. , W. F. K. J. C. van der W. E. de J. H. J. Heeres. (2014). Experimental and Modeling Studies on the Solubility of d-Arabinose, d-Fructose, d-Glucose, d-Mannose, Sucrose and d-Xylose in Methanol and Methanol–Water Mixtures. Industrial & Engineering Chemistry Research, 53(19). Satake, T., Kamiya, K., An, Y., Oishi (nee Taka), T., & Yamamoto, J. (2007). The Anti-thrombotic Active Constituents from Centella asiatica. Biological and Pharmaceutical Bulletin, 30(5), 935–940. https://doi.org/10.1248/bpb.30.935 Shinwari, Z. K., & Gilani, S. S. (2003). Sustainable harvest of medicinal plants at Bulashbar Nullah, Astore (Northern Pakistan). Journal of Ethnopharmacology, 84(2–3), 289–298. https://doi.org/10.1016/S0378-8741(02)00333-1 Sofowora, A. (1986). The state of Medicinal Plant Research in Nigeria (first). University Press Ltd., Ife. Sousa, G. F., Duarte, L. P., Alcântara, A. F. C., Silva, G. D. F., Vieira-Filho, S. A., Silva, R. R., Oliveira, D. M., & Takahashi, J. A. (2012). New triterpenes from maytenus robusta: Structural elucidation based on NMR experimental data and theoretical calculations. Molecules, 17(11), 13439–13456. https://doi.org/10.3390/molecules171113439 Sunil, C., Duraipandiyan, V., Ignacimuthu, S., & Al-Dhabi, N. A. (2013). Antioxidant, free radical scavenging and liver protective effects of friedelin isolated from Azima tetracantha Lam. leaves. Food Chemistry, 139(1–4), 860–865. https://doi.org/10.1016/j.foodchem.2012.12.041 Tian, C., Liu, X., Chang, Y., Wang, R., Lv, T., Cui, C., & Liu, M. (2021). Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. South African Journal of Botany, 137, 257–264. https://doi.org/10.1016/j.sajb.2020.10.022 Tlhapi, D. B., Ramaite, I. D. I., & Anokwuru, C. P. (2021). Metabolomic profiling and antioxidant activities of breonadiasalicina using1 h-nmr and uplc-qtof-ms analysis. Molecules, 26(21). https://doi.org/10.3390/molecules26216707 Unuofin, J. O., Otunola, G. A., & Afolayan, A. J. (2018). Polyphenolic Content, Antioxidant and Antimicrobial Activities of Vernonia mespilifolia Less. Used in Folk Medicine in the Eastern Cape Province, South Africa. Journal of Evidence-Based Integrative Medicine, 23. https://doi.org/10.1177/2515690X18773990 Van Putten, R.-J., Winkelman, J. G. M., Keihan, F., van der Waal, J. C., de Jong, E., & Heeres, H. J. (2014). Experimental and Modeling Studies on the Solubility of -Arabinose, Fructose, -Glucose, -Mannose, Sucrose and -Xylose in Methanol and Methanol–Water Mixtures. Industrial & Engineering Chemistry Research, 53(19), 8285–8290. https://doi.org/10.1021/ie500576q Van Wagenen, B.C., R. Larsen, J.H. Cardellina, D. R., & dazzo, Z.C. Lidert, C. S. (1993). Ulosantoin, a potent insecticide from the sponge Ulosaruetzleri. J Org Chem, 58, 335–337. Verpoorte, R. (2000). Pharmacognosy in the New Millennium: Leadfinding and Biotechnology. Journal of Pharmacy and Pharmacology, 52(3), 253–262. https://doi.org/10.1211/0022357001773931 Wakeel, A., Jan, S. A., Ullah, I., Shinwari, Z. K., & Xu, M. (2019). Solvent polarity mediates phytochemical yield and antioxidant capacity of Isatis tinctoria. Peer J, 2019(10). https://doi.org/10.7717/peerj.7857 Xia, W., Chakka, V. P., Chen, K., Wang, F., Xie, Y.-Y., Hider, R. C., & Zhou, T. (2022). A Novel Stilbene Analogue: Antioxidant Activity and Application in Controlling the Quality and Bacterial Growth of Shrimp Refrigerated at 4oC. Journal of Aquatic Food Product Technology, 31(2), 214–225. https://doi.org/10.1080/10498850.2021.2024636 Zhang, J., Onakpoya, I. J., Posadzki, P., & Eddouks, M. (2015). The Safety of Herbal Medicine: From Prejudice to Evidence. Evidence-Based Complementary and Alternative Medicine, 2015, 1–3. https://doi.org/10.1155/2015/316706
PDF