A Study of a Class Continuous SIR Epidemic Model with History

DOI: https://doi.org/10.33003/jobasr-2023-v1i1-19

Olopade I. A.

Mohammed I. T.

Philemon M. E.

Akinwumi T. O.

Sangoniyi S. O.

Adeniran G. A.

Ajao S. O.

Adewale S. O.

Abstract
The SIR model, an epidemiological model, divides a population into three compartments: Susceptible (S), Infected (I), and Recovered (R). It is widely used to understand the spread of infectious diseases and predict epidemic outcomes based on factors such as transmission rates and population dynamics. A deterministic epidemic mathematical model to describe the transmission dynamics of an infectious disease was constructed and analyzed by incorporating memory term which provides information on the current and past disease states. The model revealed two key equilibria: a disease-free equilibrium and an endemic equilibrium. The calculated basic reproductive numberđť‘…0 , was employed to establish that when đť‘…0 < 1, the disease-free equilibrium is locally asymptotically stable, while the endemic equilibrium is locally asymptotically stable when đť‘…0 > 1. Additionally, we explored the global stability of these equilibria using Lyapunov functions and Dulac's method, respectively. To validate our analytical findings, we conducted numerical simulations of the model which show the importance of history in the dynamic spread and elimination of disease.
References
Adeniran G. A., Olopade I. A., Ajao S. O., Akinrinmade V. A., Aderele O. R., & Adewale S. O. (2022). Sensitivity and Mathematical Analysis of Malaria and Cholera CoInfection. Asian Journal of Pure and Applied Mathematics, 4(1), 425–452. Adesanya A. O., Olopade I. A., Akinwumi T. O. & Adesanya A. A. (2016). Mathematical Analysis of Early Treatment of Gonorrhea Infection. American International Journal of Research in Science, Technology, Engineering & Mathematics, 15(2). Adesola O. I., Oloruntoyin S. S., Emmanuel P. M., Temilade M. I., Adeyemi A. G., Oladele A. S., Mamman A. U., & Kareem A. A. (2024). Mathematical Modelling and Analyzing the Dynamics of Condom Efficacy and Compliance in the Spread of HIV/AIDS. Asian Research Journal of Current Science. 6(1): 54–65. Adesola O. I., Temilade M. I., Emmanuel P. M., Oladele A. S., Adeyemi A. G., Sunday S, & Olumuyiwa A. S. (2024). Mathematical Analysis of Optimal Control of Human Immunodeficiency Virus (HIV) Co-infection with Tuberculosis (TB). Asian Research Journal of Current Science. 6(1), 23–53. Adewale S. O., Olopade I. A., Ajao S. O., & Adeniran G. A. (2015a). Mathematical Analysis of Diarrhea in the Presence of Vaccine. International Journal of Scientific and Engineering Research. 6: 396-404. Adewale S. O., Olopade I. A. & Adeniran G. A. (2015b). Mathematical Analysis of Effects of Isolation on Ebola Transmission Dynamics. Researchjouranli’s Journal of Mathematics. 2: 1-21. Ajao S., Olopade I., Akinwumi T., & Adesanya O. (2023). Understanding the Transmission Dynamics and Control of HIV Infection: A Mathematical Model Approach. Journal of the Nigerian Society of Physical Sciences. 5(2): 1389. DOI:https://doi.org/10.46481/jnsps.2023.1389. Akinwumi T. O., Olopade I. A., Adesanya A. O. & Alabi M. O. (2021). A Mathematical Model for the Transmission of HIV/AIDS with Early Treatment. Journal of Advances in Mathematics and Computer Science; 36(5): 35-51. Almuqrin M. A., Goswami P. & Sharma S. (2021). Fractional model of Ebola virus in population of bats in frame of Atangana- Baleanu fractional derivative,” Results in Physics. 26: 104295. Alzaid S. S., Alkahtani B. S. T. & Sharma S. (2021). Numerical solution of fractional model of HIV-1 infection in framework of different fractional derivatives,” Journal of Function Spaces. 10: 20-21. Beretta E. & Takeuchi Y. (2010). The class of discrete SIR epidemic models with distributed delay. Nonlinear Analysis. 28:1909–1921. Brauer F. & Castillo-Chávez C. (2001). Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York. Capasso V. (2008). Mathematical Structures of Epidemic Systems, Springer Verlag, Berlin, 2nd edition. Cooke K. L. (1979). Stability analysis for a vector disease model, Rocky Mountain J. Math. 9: 31–42. Diekmann O., Heesterbeek H. & Britton T. (2013). Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press. Princeton. Foy B. H., Wahl B., & Mehta K. (2021). Comparing COVID-19 vaccine allocation strategies in India: a mathematical modelling study. International Journal of Infectious Diseases. 103: 431–438. Ibrahim M. O., Akinyemi S. T. & Dago M. M. (2015). Mathematical Modelling of a Staged Progression HIV/AIDS Model with Control Measures. Journal of Nigerian Association of Mathematical Physics. 29: 163- 166. Kermack W. O. & McKendrick A. G. (1927). A contribution to the mathematical theory of epidemics,” Proceedings of the Royal Society of London. 115:700–721. LaSalle J. P. (1987). The stability of dynamical systems. Society for Industrial and Applied Mathematics. 25. Olopade I. A., Adesanya A. O. & Mohammed I. T. (2017). Mathematical Analysis of the Global Dynamics of an SVEIR Epidemic Model with Herd Immunity. International Journal of Science and Engineering Investigations. (IJSEI). 6(69) :141-148. Olopade I. A., Adesanya A. O. & Akinwumi T. O. (2021a). Mathematical Transmission of SEIR Epidemic Model with Natural Immunity. Asian Journal of Pure and Applied Mathematics. 3(1) :19-29. Olopade I. A., Adewale S. O., Mohammed I. T., Adeniran G. A., Ajao S. O. & Ogunsola A. W. (2021b). Effect of Effective Contact Tracing in Curtaining the Spread of Covid-19. Asian Journal of Research in Biosciences. 3(2): 118-134. Olopade I. A., Ajao S. O., Adeniran G. A., Adamu A. K., Adewale S. O., & Aderele O. R. (2022). Mathematical Transmission of Tuberculosis (TB) with Detection of Infected Undetectected. Asian Journal of Research in Medicine and Medical Sciences. 4(1): 100-119. Olopade I. A., Akinola E. I., Philemon M. E., Mohammed I. T., Ajao S. O., Sangoniyi S. O., Adeniran G. A. (2024c). Modeling the Mathematical Transmission of a Pneumonia Epidemic Model with Awareness. J. Appl. Sci. Environ. Manage. 28(2): 403-413. Philemon M. E., Olopade I. A., & Ogbaji E. O. (2023). Mathematical Analysis of the Effect of Quarantine on the Dynamical Transmission of Monkey-Pox. Asian Journal of Pure and Applied Mathematics. 5(1): 473–492. Ramos A. M., Ferrández M. R., & Vela-Pérez M. (2021). A simple but complex enough θ-SIR type model to be used with COVID-19 real data. Application to the case of Italy. Physica D. 421, article 132839. Rao F., Mandal P. S., & Kang Y. (2019). Complicated endemics of an SIRS model with a generalized incidence under preventive vaccination and treatment controls. Applied Mathematical Modelling. 67: 38–61. Safiel R., Massawe E. S., & Makinde O. D. (2012). Modelling the Effect of Screening and Treatment on Transmission of HIV/AIDS Infection in a Population. American Journal of Mathematics and Statistics. 2(4): 75-88. DOI: 10.5923/j.ajms.20120204.03. Sajid M., Abbas Z., Ali N., & Javed T. A. (2013). Note on Solutions of the SIR Models of Epidemics Using Ham. ISRN Applied Mathematics; Article ID 457072, 4 pages. Srivastava H. M., Shanker D. R., & Jain M. (2019). A study of the fractional-order mathematical model of diabetes and its resulting complications. Mathematical Methods in Applied Sciences 42
PDF