Analyzing Global Stability of M-Pox Disease Dynamics: Mathematical Insights into Detection and Treatment Strategies
DOI: https://doi.org/10.33003/jobasr-2023-v1i1-19
Olopade I. A.
Akinwumi T. O.
Philemon M. E.
Mohammed I. T.
Sangoniyi S. O.
Adeniran G. A.
Ajao S. O.
Bello B. O.
Adesanya A. O.
Abstract
In this research, a mathematical model is constructed to scrutinize the
transmission patterns of monkeypox (mpox), with a specific emphasis on
integrating the early detection of infected undetected individuals to curb its
transmission. This research takes into account a range of factors influencing the
propagation of monkeypox, encompassing population demographics, contact
dynamics, and the efficacy of early detection of unidentified infected individuals.
Employing the next-generation matrix method, the basic reproduction
number(đť‘…0) is computed, revealing that the disease-free equilibrium state is
locally asymptotically stable when(đť‘…0 < 1). This suggests that containment of
monkeypox is achievable within a human populace where (đť‘…0) remains below
one (1), yet it transitions to an endemic state when (đť‘…0) exceeds this critical value
one (1). Furthermore, a sensitivity analysis is conducted to evaluate the robustness
of our findings to variations in model parameters. Utilizing numerical simulations
conducted via MAPLE 18, we demonstrate the significance of prompt
identification and immediate intervention for infected individuals who may
otherwise go undetected, in effectively diminishing the dynamic propagation of
monkeypox. The results underscore the pivotal role of early detection in
mitigating monkeypox outbreaks and curtailing transmission rates.
References
AlarcĂłn J., Kim M., Terashita D., Davar K., Garrigues J.
M., &Guccione J. P.(2023). An Mpox-Related Death in
the United States. N Engl J Med, 388(13): 1246–1257.
Adesanya A. O., Olopade I. A., Akanni J. O., Oladapo A.
O. &Omoloye M. A.(2016b).Mathematical and
Sensitivity Analysis of Efficacy of Condom on the
Dynamical Transmission of Gonorrhoea Disease.
Imperial Journal of Interdisciplinary Research (IJIR).
2(11): 368-375.
Adesanya A.O., Olopade I. A., Akinwumi T. O. &
Adesanya A. A. (2016). Mathematical Analysis of Early
Treatment of Gonorrhea Infection. American
International Journal of Research in Science,
Technology, Engineering & Mathematics, 15(2).
Adesola O. I., Oloruntoyin S. S., Emmanuel P. M.,
Temilade M. I., Adeyemi A. G., Oladele A. S., Mamman
A. U., & Kareem A. A. (2024). Mathematical Modelling
and Analyzing the Dynamics of Condom Efficacy and Compliance in the Spread of HIV/AIDS. Asian Research
Journal of Current Science. 6(1): 54–65.
Adesola O. I., Temilade M. I., Emmanuel P. M., Oladele
A. S., Adeyemi A. G., Sunday S. & Olumuyiwa A. S.
(2024). Mathematical Analysis of Optimal Control of
Human Immunodeficiency Virus (HIV) Co-infection
with Tuberculosis (TB). Asian Research Journal of
Current Science, 6(1): 23–53.
Adewale, S. O, Olopade, I. A., Adeniran, G. A.,
Mohammed, I. T. and Ajao, S. O. (2015a). Mathematical
Analysis of Effects of Isolation On Ebola Transmission
Dynamics. Researchjournali’s Journal of Mathematics.
Vol. 2, No. 2. Pp. 1-20.
Adewale S. O., Olopade I. A., Adeniran G. A.,
Mohammed I. T., & Ajao S. O. (2015b). Mathematical
Analysis of Effects of Isolation on Ebola Transmission
Dynamics. Researchjournali’s Journal of Mathematics.
2(2):1-20.
Adewale S. O., Olopade I. A., & Adeniran G. A.(2015c).
Mathematical Analysis of Diarrhea in the Presence of
Vaccine. .International Journal of Scientific and
Engineering Research. 6(12):396-404.
Adewale S. O., Olopade I. A., Ajao S. O., & Mohammed
I. T. (2016a). Mathematical Analysis of Sensitive
Parameters on the Dynamical Spread of
HIV.International Journal of Innovative Research in
Science, Engineering and Technology. 5(5): 2624-2635.
Adewale S. O., Olopade I. A.,Ajao S. O. & Adeniran, G.
A. (2016b). Optimal Control Analysis of The
Dynamical Spread Of Measles.International Journal of
Research GRANTHAALAYAH. 4(5): 169-188.
Adler H., Gould S., Hine P., Snell L. B., Wong W.,
&Houlihan C. F. (2022). Clinical features and
management of human monkeypox: a retrospective
observational study in the UK. Lancet Infectious
Diseases. DOI: http://dx.doi.org/10.1016/S1473-
3099(22)00228-6
AjaoS. O., OlopadeI. A.,Akinwumi T. O., Adewale S. O.,
& Adesanya A. O. (2023).Understanding the
Transmission Dynamics and Control of HIV Infection: A
Mathematical Model Approach. Journal of the Nigerian
Society of Physical Sciences. 5(2).
Akinola E.I. Awoyemi B. E., Olopade I. A.,Falowo O. D.,
&Akinwumi T.O. (2021)Mathematical Analyssis of
Diarrhea Model in the Presence of Vaccination and
Treatment Waves with Sensitivity Analysis. Journal of
Applied Science and Environmental Management. 25(7):
1077-1084.
Akinwumi T. O., OlopadeI. A.,Adesanya A. O., & Alabi
M. O. (2021). Mathematical Model for the Transmission
of HIV/AIDS with Early Treatment. Journal of Advances
in Mathematics and Computer Science. 36(5): 35-51.
Bankuru S. V., Kossol S., Hou W., Mahmoudi P., Rychtář
J., &Taylor D. (2020). A game-theoretic model of
monkeypox to assess vaccination strategies. PeerJ.
8:e9272.
Bhunu C., Garira W., &Magombedze G. (2009)
Mathematical analysis of a two strain hiv/aids model with
antiretroviral treatment. Acta Biotheor. 57(3):361–381.
Bhunu C., &Mushayabasa S. (2011). Modelling the
transmission dynamics of pox-like infections. IAENG Int
J. 41(2):1–9
Brown K., &Leggat P. A. (2016). Human Monkeypox:
Current State of Knowledge and Implications for the
Future. Trop Med Infect Dis. 1(1).DOI:doi.org/10.3390/
tropicalmed1010008.
Bunge E. M., Hoet B., Chen L., Lienert F., Weidenthaler
H., &Baer L. R. (2022). The changing epidemiology of
human monkeypox: A potential threat? A systematic
review. PLoSNegl Trop Dis. 16(2):e0010141.
DOI:https://journals.plos.org/plosntds/
article?id=10.1371/journal.pntd.0010141
Castillo-Chavez C.,& Song B. (2004). Dynamical models
of tuberculosis and their applications. Math Biosci Eng
1(2).
Centers for Disease Control and Prevention (CDC).
Multistate outbreak of monkeypox--Illinois, Indiana, and
Wisconsin. (2003). MMWR Morb Mortal Wkly Rep 13;
52(23) :37–40. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/12803191.
Doty J. B., Malekani J., Kalemba L., Stanley W. T.,
Monroe B. P., Nakazawa Y. U., & Karem K. L., (2017).
Assessing Monkeypox virus prevalence in small
mammals at the human–animal interface in the
Democratic Republic of the Congo. Viruses. 9(10)
283. DOI: 10.3390/v9100283.
Hoff N. A., Doshi R. H., Colwell B., Kebela-Illunga B.,
Mukadi P., &Mossoko M. (2017). Evolution of a Disease
Surveillance System: An Increase in Reporting of Human
Monkeypox Disease in the Democratic Republic of the
Congo, 2001-2013. Int J Trop Dis Health25(2). DOI:
http://dx.doi.org/10.9734/IJTDH/2017/35885
Jezek Z., Grab B., Szczeniowski M. V., Paluku K. M.,
&Mutombo M. (1988). Human monkeypox: secondary
attack rates. Bull World Health Organ. 66(4): 65–70.
Larkin M. (2003). Monkeypox spreads as US publichealth system plays catch-up. Lancet Infect Dis. 3(8):461.
DOI:http://dx.doi.org/10.1016/s1473-3099(03)00713-8
Markewitz N. F., DeLuca J., Kalejaiye A., Shidid S., Jain
T., &Parikh P. (2023). Mpox-Associated Pneumonia: A
Case Report. AIM Clinical Cases. 2(3):e220945. DOI:
https://doi. org/10.7326/aimcc.2022.0945
MitjĂ O., Alemany A., Marks M., Lezama J. I.,
RodrĂguez-Aldama J. C.,& Torres M. S. (2023) Mpox in
people with advanced HIV infection: a global case series.
DOI: http://dx.doi.org/10.1016/S0140-6736(23)00273-8
Nguyen MT, Mentredy A, Schallhorn J, Chan M, Aung
S, Doernberg S. B (2023). Isolated Ocular Mpox without
Skin Lesions, United States. Emerg Infect Dis. 29(6).
DOI: http:// dx.doi.org/10.3201/eid2906.230032
Nguyen P., Ajisegiri W., Costantino V., Chughtai A.,
&Maclntyre C. (2021). Reemergence of human
monkeypox and declining population immunity in the
context of urbanization, Nigeria, 2017–2020. Emerg
Infect Dis. 27(4):1007–1014.
Olopade I. A., Adesanya A. O.& Mohammed I. T. (2017).
Mathematical Analysis of the Global Dynamics of an
SVEIR Epidemic Model with Herd Immunity.
International Journal of Science and Engineering
Investigations. (IJSEI).6(69):141-148.
Olopade I. A., Adesanya A. O.&Akinwumi T. O. (2021a).
Mathematical Transmission of SEIR Epidemic Model
with Natural Immunity.Asian Journal of Pure and
Applied Mathematics. 3(1):19-29.
Olopade I. A., Adewale S. O., MohammedI. T., Adeniran
G. A., Ajao S. O.& Ogunsola A. W. (2021b). Effect of
Effective Contact Tracing in Curtaining the Spread of
Covid-19. Asian Journal of Research in Biosciences.
3(2):118-134.
Olopade I. A., Adewale S. O., MohammedI. T., Ajao S.
O., &Oyedemi O. T. (2016). Mathematical Analysis of
the Role of Detection in the Dynamical Spread of HIVTB Co-infection. Journal of Advances in Mathematics.
11(10): 5715-5740.
Olopade I. A., Ajao S. O., Adeniran G. A., Adamu A. K.,
Adewale S. O., &Aderele O. R. 2022. Mathematical
Transmission of Tuberculosis (TB) with Detection of
Infected Undetectected. Asian Journal of Research in
Medicine and Medical Sciences. 4(1): 100- 119.
Olopade I. A., Akinola E. I., Philemon M. E., Mohammed
I. T., Ajao S. O., Sangoniyi S. O.,Adeniran G. A. (2024).
Modeling the Mathematical Transmission of a
Pneumonia Epidemic Model with Awareness. J. Appl.
Sci. Environ. Manage. 28(2): 403-413.
Peter O., Viriyapong R., Oguntolu F., Yosyingyong P.,
Edogbanya H., &MO A. (2020). Stability and optimal
control analysis of anscir epidemic model. J Math
Comput Sci 2020(1):2722–2753.
Philemon M. E., Olopade I. A., &Ogbaji E. O. (2023).
Mathematical Analysis of the Effect of Quarantine on the
Dynamical Transmission of Monkey-Pox. Asian Journal
of Pure and Applied Mathematics. 5(1): 473–492.
Priyamvada L., Carson W. C., Ortega E., Navarra T., Tran
S., &Smith T. G. (2022). Serological responses to the
MVA-based JYNNEOS monkeypox vaccine in a cohort
of participants from the Democratic Republic of Congo.
Vaccine.40(50):732.1–7. DOI:
http://dx.doi.org/10.1016/j. vaccine.2022.10.078
Somma S., Akinwande N.,& Chado U. (2019). A
mathematical model of monkey pox virus transmission
dynamics. IFE J Sci. 21(1):195–204.
TeWinkel R. E. (2019). Stability analysis for the
equilibria of a monkeypox model. Thesis and
Dissertations: University of
Wisconsin. https://dc.uwm.edu/etd/2132
Usman S. & Isa Adamu I. (2017). Modeling the
Transmission Dynamics of the Monkeypox Virus
Infection with Treatment and Vaccination
Interventions. Journal of Applied Mathematics and
Physics, 5, 2335-2353.
DOI: 10.4236/jamp.2017.512191.
World Health Organization. Fact sheet: Mpox. Available
from: https://www.who.int/news-room/factsheets/detail/monkeypox
PDF