Analysis of Equilibrium Points of Perturbed Circular Restricted Three-Body Problem (CRTBP) with Variable Mass
Audu Abdulmalik Onubedo
Abdulrazaq Abdulraheem
Abstract
This study develops a dynamic mathematical equation that explicitly describes the motion of an infinitesimal mass with variable mass changes in the circular restricted three-body problem under the influence of perturbation factors such as radiation pressure due to the first oblate-radiating primary, albedo from the second oblate primary, oblateness, and a disc. The study looked at the impact of changing mass, radiation, albedo, oblateness, and disc characteristics on the existence and position of equilibrium points. The equation's dimensions were analyzed using Jean's law. We determine an adequate approximation for the locations of equilibrium points. Furthermore, various graphical investigations are provided to demonstrate the influence of parameters on point location. We discovered that these perturbations influence the positions of these equilibrium points. This discovery has numerous applications, particularly in the dynamical behaviour of tiny things like cosmic dust and grains.
References