Enhancing Bacteria Classification using Image Processing and Convolutional Neural Network

DOI: https://doi.org/10.33003/jobasr-2023-v1i1-19

Sani Muhammed Tanko.

Muhammad Sani.

Abubakar Ahmad.

Abstract
Bacteria classification plays a vital role in the medical field, facilitating the diagnosis and treatment of various diseases. Traditionally, clinical specialists have relied on conventional techniques for classification, which lack predictive capabilities. Manual classification of bacteria is a laborious and time-consuming task that demands significant human effort. However, advancements in technology have opened possibilities for microorganism classification through the utilization of novel machine learning algorithms. This research explores the integration of Convolutional Neural Networks (CNNs) for the classification of bacterial samples, aiming to revolutionize the traditional manual classification methods in the medical field. The methodology involves three stages: image acquisition, feature extraction, and classification. Employing the Enhanced CNN model, the study demonstrates the effectiveness of deep learning techniques in image classification on a diverse bacterial species. Experimental results reveal superior accuracy compared to existing baseline methods, showcasing the potential of deep learning for efficient and precise bacteria classification. The proposed approach has the potential to alleviates the manual classification burden, saving time, and reducing dependence on human expertise. This research contributes to advancing healthcare practices by enhancing the accuracy and precision of 95% and 93.2% respectively for bacterial classification.
References
Al Dahoul, N., Karim, H. A., Momo, M. A., Escobar, F. I. F., Magallanes, V. A., & Tan, M. J. T. (2023). Parasitic egg recognition using convolution and attention network. Scientific Reports, 13(1). https://doi.org/10.1038/s41598- 023-41711-3 Butploy, N., Kanarkard, W., & Maleewong Intapan, P. (2021). Deep Learning Approach for Ascaris lumbricoides Parasite Egg Classification. Journal of Parasitology Research, 2021. https://doi.org/10.1155/2021/6648038 Dacal, E., Bermejo-Peláez, D., Lin, L., Álamo, E., Cuadrado, D., Martínez, Á., Mousa, A., Postigo, M., Soto, A., Sukosd, E., Vladimirov, A., Mwandawiro, C., Gichuki, P., Williams, N. A., Muñoz, J., Kepha, S., & Luengo-Oroz, M. (2021). Mobile microscopy and telemedicine platform assisted by deep learning for the quantification of Trichuris trichiura infection. PLoS Neglected Tropical Diseases, 15(9). https://doi.org/10.1371/journal.pntd.0009677 Holmström, O., Linder, N., Ngasala, B., Mårtensson, A., Linder, E., Lundin, M., Moilanen, H., Suutala, A., Diwan, V., & Lundin, J. (2017). Point-of-care mobile digital microscopy and deep learning for the detection of soiltransmitted helminths and Schistosoma haematobium. Global Health Action, 10. https://doi.org/10.1080/16549716.2017.1337325 Kumar et al 2023 An Efficient and Effective Framework for Intestinal Parasite Eg. (n.d.). Li, Y., Liu, T., Ceylan Koydemir, H., Wang, H., O’riordan, K., Bai, B., Haga, Y., Kobashi, J., Tanaka, H., Tamaru, T., Yamaguchi, K., & Ozcan, A. (2022). Deep Learning-enabled Detection and Classification of Bacterial Colonies using a Thin Film Transistor (TFT) Image Sensor. Mohammed, O., & Benlamri, R. (2014). Developing a Semantic Web Model for Medical Differential Diagnosis Recommendation. Journal of Medical Systems, 38(10). https://doi.org/10.1007/s10916-014-0079-0 Panicker, R. O., Kalmady, K. S., Rajan, J., & Sabu, M. K. (2018). Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods. Biocybernetics and Biomedical Engineering, 38(3), 691–699. https://doi.org/10.1016/j.bbe.2018.05.007 Peixinho, A. Z., Martins, S. B., Vargas, J. E., Falcão, A. X., Gomes, J. F., & Suzuki, C. T. N. (2016). Diagnosis of human intestinal parasites by deep learning. Computational Vision and Medical Image Processing V - Proceedings of 5th Eccomas Thematic Conference on Computational Vision and Medical Image Processing, VipIMAGE 2015, 107–112. https://doi.org/10.1201/b19241-19 Rujichan, C., Vongsscrewattana, N., & Phasukkit, P. (2019). BMEiCON - 2019 : the 12th Biomedical Engineering International Conference : November 19-22, 2019, Ubon Ratchathani, Thailand and Pakse, Laos. Suwannaphong, T., Chavana, S., Tongsom, S., Palasuwan, D., Chalidabhongse, T. H., & Anantrasirichai, N. (2023). Parasitic Egg Detection and Classification in Low-Cost Microscopic Images Using Transfer Learning. SN Computer Science, 5(1). https://doi.org/10.1007/s42979-023-02406-8 Wang, H., Ceylan Koydemir, H., Qiu, Y., Bai, B., Zhang, Y., Jin, Y., Tok, S., Yilmaz, E. C., Gumustekin, E., Rivenson, Y., & Ozcan, A. (2020). Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning. Light: Science and Applications, 9(1). https://doi.org/10.1038/s41377-020- 00358-9
PDF