Zinc Oxide Nanoparticles Produced from Pumpkin Pods and Zinc Acetate as Corrosion Inhibitor on Aluminium Metal in Acidic Medium: Kinetic and Thermodynamic Study

DOI: https://doi.org/10.33003/jobasr

Akakabota, A. O.

Okewale, A. O.

Abstract
This study investigates the kinetic and thermodynamic potential of using zinc oxide nanoparticles produced from pumpkin pods and zinc acetate as corrosion inhibitors on Aluminium metal immersed in an acidic medium. Kinetics and thermodynamic studies of the corrosion process are crucial for analysing and controlling corrosion processes. The corrosion study was conducted using an electrochemical spectroscopy method at temperatures of 35°C, 45°C, and 55°C. The kinetic study was analysed using Open Circuit Potential (OCP) and Linear Polarisation Resistance (LPR) for a 1.0MHCl Solution. The electrochemical measurement shows that the inhibitor concentration exhibits better corrosion resistance than the control, indicating that the coated sample provides an inhibitive effect against the entrance of the hydrochloric acid solution into the active site of the metal. This zinc oxide nanoparticle acts predominantly as an anodic, cathodic, and mixed-type inhibitor. The results show that using varying inhibitor dosages of 30 ppm, 110 ppm, and 190 ppm reduces the corrosion of aluminium metal in a hydrochloric acid environment. The polarisation resistance and corrosion rate results from the LPR and OCP measurements confirmed the effectiveness of this inhibitor. The corrosion rate from the electrochemical test indicated a gradual decrease as the dosage of the inhibitor increased, resulting in increased polarisation resistance. The results show a higher activation energy for the inhibited process at 110 ppm in comparison with the control, indicating that the inhibitor hinders the corrosion of aluminium metals. Conversely, this is not the case for 30 ppm and 190 ppm. This trend suggests that the inhibited process at a 110 ppm dosage is due to physisorption, while chemisorption occurs at 30 ppm and 190 ppm, respectively. The enthalpy change (∆H) for 30 ppm, 110 ppm, and 190 ppm solutions are 242,881.4 J/mol, 147,632 J/mol, and 95,266.6 J/mol, respectively, which is higher than that of the control (65,487.1 J/mol). Both enthalpy change and entropy change (∆S) values are positive, indicating that the adsorption on the aluminium metal is endothermic and increases the rate of disorderliness of the process.
References
Ahamad I, Prasad R & Quraishi M.A. (2010). Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric acid Solutions. Journal of Corrosion Science, 52, 933–942. Akinbulumo, O. A., Oludare, J. O., & Ebenezer L. O. (2020). Thermodynamics and Adsorption Study of the Corrosion Inhibition of Mild Steel by Euphorbia Heterophylla L. Extract in 1.5 M HCl.” Results in Materials 5: 100074. doi:10.1016/j.rinma.2020.100074. Alharbi, F. N., Abaker, Z. M., & Makawi, S. Z. A. (2023). Phytochemical Substances-Mediated Synthesis of Zinc Oxide Nanoparticles (ZnO NPS). Inorganics, 11(8), 328. https://doi.org/10.3390/inorganics11080328 AL-Dhabi, N. A., & Valan Arasu, M. (2018). An environmentally friendly green approach for the production of zinc oxide nanoparticles and their antifungal, ovicidal, and larvicidal properties. Nanomaterials, 8(7), 500. Annon, I. A., Ahmed S. A., W. K. A., Mahdi M. H., A. A. A., Wan N. R. W. I., & Abdul Amir, H. K. (2022). Corrosion Inhibition of Mild Steel in Hydrochloric Acid Environment Using Thiadiazole Derivative: Weight Loss, Thermodynamics, Adsorption and Computational Investigations. South African Journal of Chemical Engineering 41: 244–52. doi:10.1016/j.sajce.2022.06.011. Aslam, R., Mobin, M., Zehra, S., & Aslam, J. (2022). A comprehensive review of corrosionInhibitors are employed to mitigate stainless steel corrosion in different environments.Journalof Molecular Liquids, 364, 119992. Benoit, M. J., Ogunsanya, I. G., Winkler, S., Worswick, M. J., Wells, M. A., & Hansson, C. M. (2021). Internal corrosion of warm-formed aluminium alloy automotive heat exchangers. Journal of Materials Engineering and Performance, 30, 2876–2889. Dahmani, M., Dahmani, A., Et-Touhami, S. S., Al-Deyab, B., Hammouti, A., & Bouyanzer. (2010). Microbial Synthesis of Zinc Oxide Nanoparticles. International Journal of Electrochemical Science, 17, 10–40. Dang, Y. T., Power, A., Cozzolino, D., Dinh, K. B., Ha, B. S., Kolobaric, A., ... & Chapman, J. (2022). Analytical characterisation of material corrosion by biofilms. Journal of Bio-and Tribo-Corrosion, 8(2), 50. Donya, R., Mohd, Z. Bin, H.,& Yun, H. T. (2013). Synthesis and characterisation of ZnO nanostructures using palm olein as biotemplate. Chemistry Central Journal, 6, 2–10. Eddy, N O, Ameh, P.O., Gwarzo, I.J., Okop, I.J., & Dodo, S.N. (2013). Physicochemical Study and Corrosion Inhibition Potential of Ficus Tricopoda for Aluminium in Acidic Medium. Portugaliae Electrochimica Acta 31(2): 79–93. doi:10.4152/pea. 201302079. Elemike E. E., Onwudiwe D. C. & Mbonu J. I. (2021). Facile synthesis of cellulose–ZnO-hybrid nanocomposite using Hibiscus rosa-sinensis leaf extract and its antibacterial activities. Research journal of applied nanoscience, 17, 6. Esquivel, J., & Gupta, R. K. (2020). corrosion-resistant metastable Al alloys: an overview of corrosion mechanisms. Journal of the Electrochemical Society, 167(8), 081504. Ezeibe, A. U., Nleonu, E. C., & Ahumonye, A. M. (2019). Thermodynamic study of the inhibitory action of lignin extract from Gmelina arborea on the corrosion of mild steel in dilute hydrochloric acid. International Journal of Scientific Engineering and Research, 7(2), 133–136. Fayomi, O. S. I., & Akande, I. G. (2018). Corrosion mitigation of aluminium in 3.65 NaCl medium using hexamine. Journal of Bio-and Tribo-Corrosion, 5(1), 23. Fayomi, O. S. I., Akande, I. G., & Sode, A. A. (2019). Corrosion prevention of metals via electroless nickel coating: A review. In Journal of Physics: Conference Series (Vol. 1378, No. 2, p. 022063). IOP Publishing. Garg, B., Bisht, T., & Ling, Y. C. (2015). Graphene-based nanomaterials as efficient peroxidase Mimetic catalysts for biosensing applications: an overview. Molecules, 20(8), 14155-14190. Gayakwad, N., Patil, V., & Rao, B. M. (2022). The effect of Rhoeo discolour plant leaf extract on the corrosion inhibition of mild steel in acidic media. Materials Today: Proceedings, 49, 536–541. https://doi.org/10.1016/j.matpr.2021.03.671 Gharpure, S., Yadwade, R., & Ankamwar, B. (2022). Non-antimicrobial and Non-anticancer Properties of ZnO Nanoparticles Biosynthesised Using Different Plant Parts of Bixa orellana. ACS Omega, 7(2), 1914–1933. https://doi.org/10.1021/acsomega.1c05324 Goni, L. K., Yaagoob, I. Y., Mazumder, M. A., & Ali, S. A. (2024). Synergistic effect of KI on the corrosion inhibition of a poly (diallylammonium chloride)-based cyclocopolymer containing bis-cationic motifs for mild steel corrosion in 20 formic acid. RSC advances, 14(14), 9725–9746. Hairui, L., Peipei, K., Ying L., Y., Yanting H., X., J., X., C., Y., Q.F., T., R. & Xiao, W. (2020). Zinc oxide nanoparticles synthesised from Vernonia amygdalina show anti-inflammatory and antinociceptive activities in the mouse model. Artificial cell. Journal of Nanomedicine and Biotechnology, 48, 68–78. Hamid, A., Fadhel, A., & Azara, S. (2022). Studying the effect of irradiation time on preparing zinc oxide nanoparticles prepared by the microwave method. Digest Journal of Nanomaterials and Biostructures, 17(4), 1417–1422. https://doi.org/10.15251/DJNB.2022.174.1417 Hamidon, T. S., & Hussin, M. H. (2020). Susceptibility of hybrid sol-gel (TEOS-APTES) doped with caffeine as potent corrosion protective coatings for mild steel in 3.5 wt. NaCl. Progress in Organic Coatings, 140, 105478. Hanaor, D. A. H., Ghadiri, M., Chrzanowski W.& Gan, Y. (2014). Scalable Surface Area Characterisation by Electrokinetic Analysis of Complex Anion Adsorption. Journal of material science and biotechnology, 8, 5-7. HAque M. J., Bellah M. M., Hassan M. R., & Rahman S. (2020). Synthesis of ZnO nanoparticles by two different methods and comparison of their structural, antibacterial, photocatalytic and optical properties. Journal of Nanotechnology, 23, 12. Hegazy, M.A., M. Abdallah, M.K. Awad, & M. Rezk. (2014). “Three Novel Di-Quaternary Ammonium Salts as Corrosion Inhibitors for API X65 Steel Pipeline in Acidic Solution. Part I: Experimental Results.” Corrosion Science 81:5464. doi:10.1016/j.corsci.2013.12.010. Hulla, J. E., Sahu, S. C., & Hayes, A. W. (2015). Nanotechnology: History and future. Human & experimental toxicology, 34(12), 1318-1321. Iravani, S. (2011). Green Synthesis of metal nanoparticles using plants. International journal of applied chemistry, 13, 38–50. Ismail, M. A., Taha, K., M. A., & Khezami, L. (2018). ZnO Nanoparticles: Surface and X-ray Profile Analysis. Journal of Ovonic Research, 15, 381–393. Ituen, E., Akaranta, O., & James, A. (2017). Evaluation of the performance of corrosion inhibitors using Adsorption Isotherm Models: An Overview. Chem. Sci. Int. J, 18(1), 1-34. JimohA.A., A. B.H.,Azeez S.O.,Ayipo Y.O,.Abdulsalam Z.A,Adebayo Z.F,Ajao A.T & Zakariyah. (2022). Biosynthesis of Ag and TiO2 nanoparticles and the evaluation of their antibacterial activities. Inorganic Chemistry Communications V, 141, 2–3. Junaedi S, K., Al-Amiery, A.A.H., Mohamad, A.B. & Takriff, M.S. (2012). Synthesis and Characterisation of Novel Corrosion Inhibitor Derived from Oleic Acid: 2-Amino 5Oleyl-1, 3, 4-Thiadiazol (AOT). International journal of electrochemical science, 7, 43–54. Junaedi S, Al-amiery, A., Kadihum, A. & Mohamad, A. (2013). Inhibition Effects of a Synthesized Aminoantipyrine Derivative on the Corrosion of Mild Steel in Hydrochloric Acid Solution Together with Quantum Chemical Studies. International journal of molecular science, 51, 915–928. Kalpana V. N., Kataru B. A. S., Sravani N, Vigneshwari T Panneerselvam A, & Rajeswari V. D. (2018). Biosynthesis of Zinc oxide nanoparticles using culture filtrates of Aspergillus niger: Antimicrobial textiles and dye degradation studies. Journal of nanotechnology, 76, 3. Kamegawa, T., Ishiguro, Y., & Yamashita, H. (2019). Photocatalytic properties of TiO2-loaded porous silica with hierarchical macroporous and mesoporous architectures in the degradation of gaseous organic molecules. Catalysis Today, 332, 222–226. Kumar, S., Manoj, P., & Giridhar, P. (2015). Fourier transform infrared spectroscopy (FTIR) analysis, chlorophyll content and antioxidant properties of native and defatted foliage of green leafy vegetables. Journal of Food Science and Technology, 52, 8131–8139. Kovo G. A., Soumya G., Marieka G. & Jeanet C. (2021). One-pot synthesis of zinc oxide nanoparticles via chemical precipitation for bromophenol blue adsorption and antifungal activity against filamentous fungi. Scientific report, 15, 8. Liu, C. H., Lai, Y. X., Chen, J. H., Tao, G. H., Liu, L. M., Ma, P. P., & Wu, C. L. (2016). Natural-aging-induced reversal of the precipitation pathways in an Al–Mg–Si alloy. Scripta Materialia, 115, 150-154. Liu, P., Xu, Q., Zhang, Q., Huang, Y., Liu, Y., Li, H.,& Lei, G. (2024). A new insight into Corrosion inhibition mechanism of the corrosion inhibitors: review on DFT and MD simulation. Journal of Adhesion Science and Technology, 38(10), 1563-1584. López C., & Rodríguez Páez, J. E. (2017). Synthesis and characterisation of ZnO nanoparticles: effect of solvent and antifungal capacity of NanoParticles obtained in ethylene glycol. Journal of Applied Physics, 8, 23–78. Martin, R. W., Edwards, P. R., Donnell, K. P., Mackay, E. G., & Watson, I. M. (2002). Microcomposition and luminescence of InGaN emitters. physica status solidi (a), 192(1), 117-123. Mohammed, Y., Faruruwa, M. D., Muhammad, A., & Haruna, A. S. (2024). Kinetics and Thermodynamics of Heavy Metal Adsorption using Activated Carbon Developed from Doum Palm Seeds. Journal of Basics and Applied Sciences Research, 2(1), 177–194. https://doi.org/10.33003/jobasr-2024-v2i1-44 Morones J.R., Elechiguerra J.L.,& Camacho A . (2005). The bactericidal effect of silver nanoparticles. Journal of Animal Science Biootechnology, 16, –6-53. Mureddu, M., Ferino, I., Musinu, A., Ardu, A., Rombi, E., Cutrufello, M. G., Deiana, P., Fantauzzi, M., & Cannas, C. (2014). MeO x /SBA-15 (Me = Zn, Fe): highly efficient nanosorbents for mid-temperature H 2 S removal. J. Mater. Chem. A, 2(45), 19396–19406. https://doi.org/10.1039/C4TA03540B Nzekekwu, A.K. & Abosede, O.O. (2019). Green Synthesis and Characterisation of Silver Nanoparticles Using Leaf Extracts of Neem (Azadirachta indica) and Bitter Leaf (Vernonia amygdalina). Journal of Applied Science Environment Management, 23, 695–699. Oguzie, E., Li, Y., & Wang, F. (2007). Corrosion inhibition and adsorption behaviour of methionine on mild steel in sulfuric acid and the synergistic effect of iodide ion. Journal of Colloid Interface Science, 310, 90-98. Pan, P., Chen, H., Liang, Z., & Zhao, Q. (2018). Deposition and corrosion characteristics of liquid-solid droplets on tubular corrosion probes in desulphurised flue gas. Engineering Failure Analysis, 90, 129–140. Pandey, A., Dalal, S., Dutta, S., & Dixit, A. (2021). Structural characterization of polycrystalline thin films by X-ray diffraction techniques. Journal of Materials Science: Materials in Electronics, 32(2), 1341-1368. Popov, B. N. (2015). Corrosion Inhibitors. In Corrosion Engineering, Elsevier, 581–97. doi:10.1016/B978-0-444-62722-3.00014-8. Prami, N, & Debajyoti, D. (2019). Photocatalytic degradation of Rhodamine-B dye by stable ZnO nanostructures with different calcination temperatures, which induce defects. Journal of Applied Surface Science, 43, 465–556. Quadri, T. W., Akpan, E. D., Olasunkanmi, L. O., Fayemi, O. E., & Ebenso, E. E. (2022). Fundamentals of corrosion chemistry. In Environmentally sustainable corrosion inhibitors (pp. 25-45). Elsevier. Quan, B., Li, J., & Chen, C. (2021). Effect of Corrosion Temperature on the Corrosion of Q235 Steel and 16Mn Steel in Sodium Aluminate Solutions. ACS Omega, 6(40), 25904–25915. https://doi.org/10.1021/acsomega.1c02220 Shukla, S. K., & Eno, E. E. (2011). Corrosion Inhibition, Adsorption Behaviour and Thermodynamic Properties of Streptomycin on Mild Steel in Hydrochloric Acid Medium. International Journal of Electrochemical Science 6(8): 3277–91. doi:10.1016/S1452-3981(23)18251-4. Swenson, H., & Nicholas P. S. (2019). Langmuir’s Theory of Adsorption: A Centennial Review Langmuir 35(16): 5409–26. doi:10.1021/acs.langmuir.9b00154. Vaszilcsin, C. G., Putz, M. V., Kellenberger, A., & Dan, M. L. (2023). On the evaluation of metal-Corrosion inhibitor interactions by adsorption isotherms. Journal of Molecular Structure, 1286, 135643. YU, J. G., Wang, W. G.,& Cheng, B. (2010). Synthesis and enhanced photocatalytic activity of a Hierarchical porous flowerlike pn junction NiO/TiO2 photocatalyst. Journal of Applied Chemistry, 5, 23. Zhao, Y.-L., Ye, F.-X., Zhang, G., Yao, J., Liu, Y.-F., & Dong, S.-G. (2022). Investigation of erosion-corrosion behaviour of Q235B steel in liquid-solid flows. Petroleum Science, 19(5), 2358–2373. https://doi.org/10.1016/j.petsci.2022.05.020 Zehra, S., Mobin, M., & Aslam, J. (2022). An overview of the corrosion chemistry. Environmentally Sustainable Corrosion Inhibitors, 3-23.
PDF