Computational Framework for Quantum Gravity Phenomenology: Numerical Methods and Future Observational Prospects in Multi-Messenger Astrophysics
Koffa D.J.
Ogunjobi O.
Omonile J.F.
Obaje V.O.
Ahmed-Ade F.
Aliu N.S.
Olorunleke I.E.
Abstract
The detection of quantum gravity signatures in astrophysical observations faces fundamental challenges due to the extremely small magnitude of expected effects and the computational complexity required for precision modelling. We present a comprehensive computational framework that addresses these challenges through advanced numerical methods specifically designed for quantum gravity phenomenology. Our numerical implementation incorporates modified stellar structure calculations, advanced parameter estimation algorithms, and high-performance computing techniques to achieve the precision required for detecting subtle quantum gravity signatures in astronomical observations. The framework includes robust validation protocols, extensive benchmarking against analytical limits, and comprehensive uncertainty quantification methods that ensure reliable scientific conclusions. Through systematic convergence studies and comparison with existing literature, we demonstrate numerical accuracy at the level of 〖10〗^(-6) for stellar structure calculations and 〖10〗^(-4) for parameter estimation, sufficient for current and next-generation observational precision. Our computational infrastructure scales efficiently to problems involving millions of parameters and enables exploration of the full multidimensional parameter spaces relevant to quantum gravity phenomenology. Looking toward the future, we provide detailed projections for the observational capabilities of next-generation facilities, including ATHENA, Lynx, Einstein Telescope, and Cosmic Explorer, demonstrating that definitive tests of quantum gravity theories should be achievable within two decades. The computational methods and software tools developed in this work are made publicly available to enable community-wide exploitation of multi-messenger observations for fundamental physics research. These developments establish the computational foundation necessary for the transition from preliminary constraints to precision tests of quantum gravity theories through astrophysical observations.
References
Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., ... & Kopper, C. (2021). IceCube-Gen2: the window to the extreme Universe. Journal of Physics G: Nuclear and Particle Physics,48}(6), 060501.https://doi.org/10.1088/1361-6471/abfell.
Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., ... & Zweizig, J. (2016). Observation of gravitational waves from a binary black hole merger. Physical Review Letters,116(6), 061102.https://doi.org/10.1103/PhysRevLett.116.061102
Annala, E., Gorda, T., Kurkela, A., & Vuorinen, A. (2018). Gravitational-wave constraints on the neutron-star-matter equation of state. Physical Review Letters,120(17), 172703. https://doi.org/10.1103/PhysRevLett.120.172703
Bandopadhyay, A., Datta, S., Phukon, K. S., & Bose, S. (2024). Neutron star equation of state from the joint detection of gravitational waves and electromagnetic signals. Physical Review D, 109(4), 043003. https://doi.org/10.1103/PhysRevD.109.043003
Barcons, X., Barret, D., Decourchelle, A., den Herder, J. W., Fabian, A. C., Matsumoto, H., ... & Watson, M. (2017). Athena: the Advanced Telescope for High-ENergy Astrophysics. AstronomischeNachrichten, 338(2-3), 153-158. https://doi.org/10.1002/asna.201713345
Bisero, S., Branchesi, M., Foffano, L., Grado, A., Limatola, L., Napolitano, N. R., & Salafia, O. S. (2025). Multi-messenger observations of binary neutron star mergers: synergies between the next generation gravitational wave interferometers and wide-field, high-multiplex spectroscopic facilities. arXiv preprint. arXiv:2507.02055.
Capozziello, S., Lambiase, G., & Scarpetta, G. (2000). Generalized uncertainty principle from quantum geometry. International Journal of Theoretical Physics,39(1), 15-22. https://doi.org/10.1023/A:1003634814685
Das, S., & Vagenas, E. C. (2009). Phenomenological implications of the generalized uncertainty principle. Canadian Journal of Physics,87(3), 233-240.https://doi.org/10.1139/P08-105
El-Nabulsi, R. A. (2020). Generalized uncertainty principle in astrophysics from Fermi statistical physics arguments. International Journal of Theoretical Physics, 59(7), 2083-2090. https://doi.org/10.1007/s10773-020-04480-7
Evans, M., Sturani, R., Vitale, S., & Hall, E. (2021). A horizon study for cosmic explorer: science, observatories, and community. arXiv preprint arXiv:2109.09882.
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). emcee: the MCMC hammer. Publications of the Astronomical Society of the Pacific,125(925), 306. https://doi.org/10.1086/670067
Gaskin, J. A., Swartz, D. A., Vikhlinin, A., Clarke, T., Gelmis, K., Mullins, J., ... & Zhang, W. W. (2019). Lynx X-ray Observatory: an overview. Journal of Astronomical Telescopes, Instruments, and Systems,5(2), 021001. https://doi.org/10.1117/1.JATIS.5.2.021001
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science,(4), 457-472. https://doi.org/10.1214/ss/1177011136
Giardino, S., & Salzano, V. (2021). Cosmological constraints on the generalized uncertainty principle from modified Friedmann equations. European Physical Journal C, 81(2), 110. https://doi.org/10.1140/epjc/s10052-021-08914-2
Hinderer, T. (2008). Tidal love numbers of neutron stars. The Astrophysical Journal, 677}(2), 1216.https://doi.org/10.1086/533487
Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623.
Hossenfelder, S. (2013). Minimal length scale scenarios for quantum gravity. Living Reviews in Relativity, 16(1), 2. https://doi.org/10.12942/lrr-2013-2
Iacovelli, F., Mancarella, M., Foffa, S., & Maggiore, M. (2023). Nuclear physics constraints from binary neutron star mergers in the Einstein Telescope era. Physical Review D, 108}(12), 122006.https://doi.org/10.1103/PhysRevD.108.122006
Ivezić, Ž., Kahn, S. M., Tyson, J. A., Abel, B., Acosta, E., Allsman, R., ... &Yoachim, P. (2019). LSST: from science drivers to reference design and anticipated data products. The Astrophysical Journal, 873(2), 111. https://doi.org/10.3847/1538-4357/ab042c
Kempf, A., Mangano, G., & Mann, R. B. (1995). Hilbert space representation of the minimal length uncertainty relation. Physical Review D,52(2), 1108. https://doi.org/10.1103/PhysRevD.52.1108
Lewis, A., & Bridle, S. (2002). Cosmological parameters from CMB and other data: a Monte Carlo approach. Physical Review D,66}(10), 103511. https://doi.org/10.1103/PhysRevD.66.103511
McEwen, J. D., Polanska, A., & Price, M. A. (2021). Learned harmonic mean estimation of the Bayesian evidence. Physical Review D, 103(12), 123513. https://doi.org/10.1103/PhysRevD.103.123513
Miller, M. C., Lamb, F. K., Dittmann, A. J., Bogdanov, S., Arzoumanian, Z., Gendreau, K. C., ... & Wolff, M. T. (2019). PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. The Astrophysical Journal Letters, 887(1), L24. https://doi.org/10.3847/2041-8213/ab50c5
Most, E. R., Papenfort, L. J., &Rezzolla, L. (2025). Constraining the equation of state in neutron-star cores via the long-ringdown signal. Nature Communications, 16(1), 345.
Netz-Marzola, S., &Hadjimichef, D. (2024). Effects of a generalized uncertainty principle on the MIT bag model equation of state. AstronomischeNachrichten, 345(2-3), e20240016. https://doi.org/10.1002/asna.20240016
Polanska, A., Price, M. A., Piras, D., Spurio Mancini, A., & McEwen, J. D. (2024). Learned harmonic mean estimation of the Bayesian evidence with normalizing flows. arXiv preprint arXiv:2405.05969.
Prakash, A., Radice, D., Logoteta, D., Perego, A., Nedora, V., Bombaci, I., ... &Bernuzzi, S. (2024). Signatures of deconfined quark phases in binary neutron star mergers. Physical Review D, 109(10), 103025. https://doi.org/10.1103/PhysRevD.109.103025
Punturo, M., Abernathy, M., Acernese, F., Allen, B., Andersson, N., Arun, K., ... & Willke, B. (2010). The Einstein Telescope: a third-generation gravitational wave detector. Classical and Quantum Gravity, 27(19), 194002. https://doi.org/10.1088/0264-9381/27/19/194002
Raithel, C. A. (2019). Constraints on the neutron star equation of state from GW170817. arXiv preprint arXiv:1904.10002.
Reed, B. T., Horowitz, C. J., & Coté, B. (2023). Toward accelerated nuclear-physics parameter estimation from binary neutron star mergers: emulators for the Tolman–Oppenheimer–Volkoff equations. The Astrophysical Journal, 952(1), 55. https://doi.org/10.3847/1538-4357/ace525
Rose, H., Landry, P., & Chakravarti, S. (2023). Determining Love numbers for realistic neutron star equations of state. Physical Review D, 107(8), 083028. https://doi.org/10.1103/PhysRevD.107.083028
Spurio Mancini, A., Docherty, M. M., Price, M. A., & McEwen, J. D. (2023). Accelerated Bayesian inference using deep learning. Monthly Notices of the Royal Astronomical Society, 511(2), 1771-1788. https://doi.org/10.1093/mnras/stac064
Thrane, E., & Talbot, C. (2019). An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models. Publications of the Astronomical Society of Australia,36, e010. https://doi.org/10.1017/pasa.2019.2
Vázquez, J. A., Tamayo, D., Sen, A. A., & Quiros, I. (2021). Cosmological parameter inference with Bayesian statistics. Universe, 7(7), 213. https://doi.org/10.3390/universe7070213
Walker, K., Smith, R., Thrane, E., & Reardon, D. J. (2024). Precision constraints on the neutron star equation of state with third-generation gravitational-wave observatories. arXiv preprint arXiv:2401.02604.
Yunes, N., Stein, L. C., & Cornish, N. J. (2022). Gravitational-wave and X-ray probes of the neutron star equation of state. arXiv preprint arXiv:2202.04117.
Zuntz, J., Paterno, M., Jennings, E., Rudd, D., Manzotti, A., Dodelson, S., ... & Wechsler, R. H. (2015). CosmoSIS: modular cosmological parameter estimation.Astronomy and Computing, 12, 45-59. https://doi.org/10.1016/j.ascom.2015.05.005
PDF