Effects of Pesticides on Earthworm as an Ecosystem Provider
DOI: https://doi.org/10.33003/jobasr
Linda Soda Baga
Francis Ofurum Arimoro
Abstract
Pesticides, which are typically harmful to non-target soil organisms, particularly earthworms, which are essential for assessing soil fertility, are used extensively in agricultural expansion to solve the issue of food security for the growing population. Agrochemicals used carelessly can cause poor survival rates, lower growth and reproduction rates, disrupt enzymatic activity, damage some tissues and ultimately a decrease in the overall biomass of earthworms yet very little is now known about the harmful effects of pesticides on these earthworms. Earthworms can come into contact with these pesticides through their skin or by feeding on contaminated soil litter. These toxins mostly go through the skin and the body wall of earthworms. Even according to agricultural recommendations for dosage and rate of application, insecticides such as Pyrethroid, Neonicotinoids and Organophosphates are extremely toxic to earthworms. The data that is currently available on how pesticides affect various earthworm species suggests that the pesticides caused changes in the way certain important enzymes functioned. These enzymes may be useful markers of the toxicity of pesticides to earthworms. Pesticides have a harmful impact on earthworm survival and weight gain, according to studies on growth and survival metrics. This results in decreased biomass production, cocoon creation, and post-hatching development of young individuals. As the concentration of pesticides increases, the biomass of earthworms decreases. Proven that pesticides may drastically lower the earthworm population in soil, this information provided may assist farmers and policymakers in developing and implementing improved farming techniques that minimize excessive pesticide contamination of the soil.
References
Abad Q and Shafiqi (2024). Vermicompost: Significance and Benefits for Agriculture. Journal for Research in Applied Sciences and Biotechnology 3:10.55544/jrasb.3.2.36.202-207.
Agrawal, A., Pandey, R. S & Sharma, B (2010). Water pollution with special reference to pesticide contamination in India. Journal of Water Resource Protection 2: 432–448.
Aly, MAS & Schröder, P (2008). Effect of herbicides on glutathione S-transferases in the earthworm, Eisenia fetida. Environmental Science and Pollution Research, 15(2), 143-149.
Bansiwal, K & Rai, N (2010). Assessment of malathion toxicity in certain organs of earthworm, Eisenia fetida. Bioscan, 5(3), 473-476.
Booth, L, Heppelthwaite, V & Mcglinchy, A (2000b). The effect of environmental parameters on growth, cholinesterase activity and glutathione S-transferase activity in the earthworm (Apporectodeacaliginosa). Biomarkers, 5(1), 46-55.
Booth, LH, Heppelthwaite, V. J &O'halloran, K (2000a). Growth development and fecundity of the earthworm Aporrectodeacaliginosa after exposure to two organophosphates. New Zealand Plant Protection, 53, 221-225.
Bouché, M.B (1977). Strategies lombriciennes. Ecological Bulletins, 122-132.
Bustos-Obregón, E & Goicochea, R. I (2002). Pesticide soil contamination mainly affects earthworm male reproductive parameters. Asian journal of andrology, 4(3), 195-200.
Calisi, A, Lionetto, M. G & Schettino, T (2009), Pollutant-induced alterations of granulocyte morphology in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 72(5), 1369-1377.
Chen, J, Saleem, M, Wang, C, Liang, W & Zhang, Q (2018). Individual and combined effects of herbicide tribenuron-methyl and fungicide tebuconazole on soil earthworm Eisenia fetida. Scientific reports, 8(1), 1-9.
Chen, J, Saleem, M, Wang, C, Liang, W & Zhang, Q (2018). Individual and combined effects of herbicide tribenuron-methyl and fungicide tebuconazole on soil earthworm Eisenia fetida. Scientific reports, 8(1), 1-9.
Choo, L.P.D & Baker, G.H..1(998). Influence of four commonly used pesticides on the survival, growth, and reproduction of the earthworm Aporrectodeatrapezoides (Lumbricidae). Australian Journal of Agricultural Research, 49(8), 1297-1303.5
Clauss, W.G, (2001). Epithelial transport and osmoregulation in annelids. Canadian journal of zoology, 79(2), 192-203.
De Silva, P.M.C & van Gestel, C.A (2009). Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics. Chemosphere, 77(11), 1609-1613.
De Sousa, A. P. A., & De Andréa, M. M. (2011). Earthworm (Eisenia andrei) avoidance of soils treated with cypermethrin. Sensors, 11(12), 11056-11063.
Depledge, M.H. (1994). The rational basis for the use of biomarkers as ecotoxicological tools. In Nondestructive Biomarkers in Vertebrates, M.C., Fossi, C., Leonzio, (Eds.), pp. 271– 295, Lewis Publisher, ISBN 978-0873716482 Boca Raton, USA
Dutta, A & Dutta, H (2016). Some insights on the effect of pesticides on earthworms. International Research Journal of Environment Sciences, 5(4), 61-66.
Espinoza-Navarro, O & Bustos-Obregón, E (2004). Sublethal doses of malathion alter male reproductive parameters of Eisenia fetida. International Journal of Morphology, 22(4), 297-302.
Frampton, G.K, Jänsch, S, Scott‐Fordsmand, J.J, Römbke, J & Van den Brink, P.J (2006). Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environmental Toxicology and Chemistry: An International Journal, 25(9), 2480-2489.
García-Torres, T, Giuffré, L, Romaniuk, R, Ríos, R.P & Pagano, E.A (2014). Exposure assessment to glyphosate of two species of annelids. Bulletin of environmental contamination and toxicology, 93(2), 209-214.
Gupta, S.K & Saxena, P.N (2003). Carbaryl-induced behavioural and reproductive abnormalities in the earthworm Metaphireposthuma: a sensitive model. Alternatives to laboratory Animals, 31(6), 587-593.
Hayes, J.D, Flanagan, J.U & Jowsey, I.R (2005). Glutathione transferases. Annual review of pharmacology and toxicology, 45(1), 51-88.
Helling, B, Reinecke, S.A & Reinecke, A.J (2000). Effects of the fungicide copper oxychloride on the growth and reproduction of Eisenia fetida (Oligochaeta). Ecotoxicology and environmental safety, 46(1), 108-116.
Hund-Rinke, K &Wiechering, H (2001). Earthworm avoidance test for soil assessments. Journal of Soils and Sediments, 1(1), 15-20.
Hund-Rinke, K, Achazi, R, Römbke, J & Warnecke, D (2003). Avoidance test with Eisenia fetidaas indicator for the habitat function of soils: Results of a laboratory comparison test. Journal of soils and Sediments, 3(1), 7-12.
International Organization for Standardization ISO (2008). Soil quality-Avoidance test for determining the quality of soils and effects of chemicals on behaviour - Part 1: Test with earthworms (Eisenia fetida and Eisenia andrei). ISO 17512–1, International Organization for Standardization, Geneva, Switzerland.
International Organization for Standardization ISO (2011). Soil quality-Avoidance test for determining the quality of soils and effects of chemicals on behaviour - Part 2: Test with collembolans (Folsomia candida). ISO 17512–2, International Organization for Standardization, Geneva, Switzerland.
Jager, T, Fleuren, R.H, Hogendoorn, E.A & De Korte, G (2003). Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environmental science & technology, 37(15), 3399-3404.
Jouquet, P, Dauber, J, Lagerlöf, J, Lavelle, P & Lepage, M (2006). Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Applied soil ecology, 32(2), 153-164.
Kellogg, R.L, Nehring, R.F, Grube, A, Goss, D.W & Plotkin, S (2002). Environmental indicators of pesticide leaching and runoff from farm fields. In Agricultural productivity (pp. 213-256). Springer, Boston, MA.
Kumar, K & Kumawat, P (2018). A review on the effect of herbicides on the earthworms. International Journal of Zoology Studies, 3(2), 120-125.
LaCourse, E.J, Hernandez-Viadel, M., Jefferies, J.R., Svendsen, C, Spurgeon, D.J., Barrett, J & Brophy, P.M. ( 2009). Glutathione transferase (GST) as a candidate molecular-based biomarker for soil toxin exposure in the earthworm Lumbricusrubellus. Environmental Pollution, 157(8-9), 2459-2469.
Lakhani, L, Khatri, A & Choudhary, P (2012). Effect of dimethoate on testicular histomorphology of the earthworm Eudichogasterkinneari (Stephenson). International Research Journal of Biological Sciences, 1(4), 77-80.
Lalitha, R, Fathima, K and Ismail, S.A (2000). Impact of biopesticides and microbial fertilizers on productivity and growth of Abelmoschus esculentus. Vasundhara The Earth., 1 & 2: 4-9.
Lanno, R, Wells, J, Conder, J, Bradham, K & Basta, N (2004). The bioavailability of chemicals in soil for earthworms. Ecotoxicology and environmental safety, 57(1), 39-47.
Lavelle, P & Spain, A.V (2001). Soil ecology. Soil ecology.
Lee, K.E (1985), Earthworms: their ecology and relationships with soils and land use. Academic Press Inc.
Lemtiri, A, Colinet, G, Alabi, T, Cluzeau, D, Zirbes, L, Haubruge, É & Francis, F (2014). Impacts of earthworms on soil components and dynamics. A review. Biotechnologie, Agronomie, Société et Environnement, 18.
Lin, Z., Zhen, Z., Liang, Y., Li, J., Yang, J., Zhong, L & Zhang, D (2019). Changes in atrazine speciation and the degradation pathway in red soil during the vermiremediation process. Journal of hazardous materials, 364, 710-719.
Lin, Z., Zhen, Z., Ren, L., Yang, J., Luo, C., Zhong, L & Zhang, D (2018). Effects of two ecological earthworm species on atrazine degradation performance and bacterial community structure in red soil. Chemosphere, 196, 467-475.
Lionetto, M.G., Calisi, A & Schettino, T (2012). Earthworm biomarkers as tools for soil pollution assessment. Soil health and land use management, 16, 305-331.
Lukkari, T, Taavitsainen, M, Soimasuo, M, Oikari, A & Haimi, J (2004). Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure. Environmental Pollution, 129(3), 377-386.
Maity, S, Roy, S, Chaudhury, S & Bhattacharya, S (2008). Antioxidant responses of the earthworm Lampitomauritii exposed to Pb and Zn contaminated soil. Environmental Pollution, 151(1), 1-7.
Martínez Morcillo, S, Yela, J.L, Capowiez, Y, Mazzia, C, Rault, M & Sanchez-Hernandez, JC (2013). Avoidance behaviour response and esterase inhibition in the earthworm, Lumbricus terrestris, after exposure to chlorpyrifos. Ecotoxicology, 22(4), 597-607.
Mekahlia, M.N, Tine, S, Menasria, T, Amieur, H & Salhi, H (2016). In vitro biomarker responses of earthworm Lumbricus terrestris exposed to herbicide sekator and phosphate fertilizer. Water, Air, & Soil Pollution, 227(1), 1-8.
Miller, G.T (2004). Sustaining the earth, Thompson learning. Inc. Pacific Grove, California, 9, 211-216.
Morillo, E & Villaverde, J (2017). Advanced technologies for the remediation of pesticide-contaminated soils. Science of the Total Environment, 586, 576-597.
Morowati, M (2000). Histochemical and histopathological study of the intestine of the earthworm (Pheretima elongata) exposed to a field dose of the herbicide glyphosate. Environmentalist, 20(2), 105-111.
Mosleh, Y.Y., Ismail, S.M., Ahmed, M.T & Ahmed, Y.M (2003a). Comparative toxicity and biochemical responses of certain pesticides to the mature earthworm Aporrectodeacaliginosa under laboratory conditions. Environmental Toxicology: An International Journal, 18(5), 338-346.
Mosleh, Y.Y., Paris‐Palacios, S, Couderchet, M & Vernet, G (2003b). Acute and sublethal effects of two insecticides on earthworms (Lumbricus terrestris L.) under laboratory conditions. Environmental Toxicology: An International Journal, 18(1), 1-8.
Muthukaruppan, G, Janardhanan, S & Vijayalakshmi, G (2005). Sublethal Toxicity of the Herbicide Butachlor on the Earthworm Perionyx sansibaricus and its Histological Changes (5 pp). Journal of Soils and Sediments, 5(2), 82-86.
Nahmani, J, Hodson, M.E & Black, S (2007). A review of studies performed to assess metal uptake by earthworms. Environmental pollution, 145(2), 402-424.
Natal-da-Luz, T., Amorim, M.J., Römbke, J & Sousa, J.P (2008), Avoidance tests with earthworms and springtails: defining the minimum exposure time to observe a significant response. Ecotoxicology and environmental safety, 71(2), 545-551.
Nayak, S., Mishra, C.S.K., Guru, B.C & Samal, S (2018). Histological anomalies and alterations in enzyme activities of the earthworm Glyphidrillus tuberosus exposed to high concentrations of phosphogypsum. Environmental monitoring and assessment, 190(9), 1-7
.
Neuwirthová, N., Trojan, M., Svobodová, M., Vašíčková, J., Šimek, Z., Hofman, J &Bielská, L (2019). Pesticide residues remaining in soils from previous growing season (s)-Can they accumulate in non-target organisms and contaminate the food web?.Science of the Total Environment, 646, 1056-1062.
Novais, S.C., Gomes, S.I., Gravato, C., Guilhermino, L., De Coen, W., Soares, A.M & Amorim, M.J (2011). Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. Environmental Pollution, 159(7), 1836-1843.
Oluah, N.S., Obiezue, R.N., Ochulor, A.J & Onuoha, E (2016). Toxicity and histopathological effect of atrazine (Herbicide) on the earthworm Nsukkadrilusmbae under laboratory conditions. Animal Research International, 7, 1287-1293.
Oruc, E.O., Sevgiler, Y &Uner, N (2004). Tissue-specific oxidative stress responses in fish exposed to 2, 4-D and azinphosmethyl. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 137(1), 43-51.
Owagboriaye, F., Dedeke, G., Bamidele, J., Aladesida, A., Isibor, P., Feyisola, R & Adeleke, M (2020). Biochemical response and vermiremediation assessment of three earthworm species (Alma millsoni, Eudriluseugeniae and Libyodrilus violaceus) in soil contaminated with a glyphosate-based herbicide. Ecological Indicators, 108, 105678.
Pelosi, C., Barot, S., Capowiez, Y., Hedde, M &Vandenbulcke, F (2014). Pesticides and earthworms. A review. Agronomy for Sustainable Development, 34(1), 199-228.
Pereira, J.L., Antunes, S.C., Ferreira, A.C., Goncalves, F & Pereira, R (2010). Avoidance behaviour of earthworms under exposure to pesticides: is it always chemosensorial?. Journal of Environmental Science and Health Part B, 45(3), 229-232.
Rashi Miglani & Satpal Singh Bisht (2019). World of earthworms with pesticides and insecticides. Interdisciplinary Toxicology. Volume 12(2): 71–82.
Rault, M., Mazzia, C &Capowiez, Y (2007). Tissue distribution and characterization of cholinesterase activity in six earthworm species. Comparative Biochemistry and Physiology Part B:
Reddy, N.C & Rao, J.V (2008). Biological response of earthworm, Eisenia fetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicology and Environmental Safety, 71(2), 574-582.
Reinecke, A.J., Maboeta, M.S, Vermeulen, L.A & Reinecke, S.A (2002). Assessment of lead nitrate and mancozeb toxicity in earthworms using the avoidance response. Bulletin of Environmental Contamination and Toxicology, 68(6), 779-786.
Reinecke, S.A & Reinecke, A.J (2007a). The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa. Ecotoxicology and environmental safety, 66(2), 244-251.
Reinecke, S.A & Reinecke, A.J (2007b). Biomarker response and biomass change of earthworms exposed to chlorpyrifos in microcosms. Ecotoxicology and Environmental Safety, 66(1), 92-101.
Rico, A., Sabater, C & Castillo, M.Á (2016). Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 127, 222-229.
Rodríguez-Castellanos, L & Sanchez-Hernandez, J.C (2007). Earthworm biomarkers of pesticide contamination: current status and perspectives. Journal of Pesticide Science, 0710050002-0710050002.
Römbke, J., Jänsch, S., & Didden, W. (2005). The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety, 62(2), 249-265.
Saint-Denis, M., Narbonne, J., Arnaud, C & Ribera, D (2001). Biochemical responses of the earthworm Eisenia andrei exposed to contaminated artificial soil: effects of lead acetate. Soil Biology and Biochemistry, 33(3), 395-404.
Salokhe, S.G., Sonawane, H.V & Deshpande, S.G (2014). Laboratory evaluation of fipronil on biological, parameters, gut microflora and physiology of Eudriluseugeniae. International Journal of Scientific and Research Publications, 4, 1-6.
Samal, S., Mishra, C.S.K. & Sahoo, S. (2019). Setal-epidermal, muscular and enzymatic anomalies induced by certain agrochemicals in the earthworm Eudriluseugeniae (Kinberg). Environmental Science and Pollution Research, 26(8), 8039-8049.
Sanchez-Hernandez, J.C (2006). Earthworm biomarkers in ecological risk assessment. Reviews of environmental contamination and toxicology, 85-126.
Sanchez-Hernandez, J.C, Cares, X.A, Pérez, M.A & Del Pino, J.N (2019). Biochar increases pesticide-detoxifying carboxylesterases along earthworm burrows. Science of the Total Environment, 667, 761-768.
Saxe, J.K., Impellitteri, C.A., Peijnenburg, W.J & Allen, H.E (2001). Novel model describing trace metal concentrations in the earthworm, Eisenia andrei. Environmental science & technology, 35(22), 4522-4529.
Saxena, P.N., Gupta, S.K. & Murthy, R.C (2014). Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphireposthuma and Eisenia fetida—a possible mechanism. Ecotoxicology and environmental safety, 100, 218-225.
Shen, Y (2010). Earthworms in Traditional Chinese Medicine: (Oligochaeta: Lumbricidae, Megascolecidae). Zoology in the Middle East, 51(sup2), 171-173.
Shi, Y., Shi, Y., Wang, X., Lu, Y & Yan, S (2007). Comparative effects of lindane and deltamethrin on mortality, growth, and cellulase activity in earthworms (Eisenia fetida). Pesticide biochemistry and physiology, 89(1), 31-38.
Shiping, Zhou., Changqun, Duan., Xuehua, Wang., Michelle, W.H.G., Zefen, Y.U. & Hui, F.U. (2008). Assessing cypermethrin-contaminated soil with three different earthworm test methods. Journal of Environmental Sciences, 20(11), 1381-1385.
Shipley, A.E. (1970). In: The Cambridge Natural History. (Harmer, S. F. and Shipley, A. E. eds.). Codicote, England.
Tiwari, R.K., Singh, S., Pandey, R.S. & Sharma, B. (2016). Enzymes of earthworm as indicators of pesticide pollution in soil. Advances in Enzyme Research, 4(04), 113.
United State Environmental Protection Agency (USEPA,2015). What is a Pesticide?, EPAAvailable at: https://www.epa.gov/minimum-risk-pesticides/what-pesticide.
Vijver, M.G., Vink, J.P., Miermans, C.J. & van Gestel, C.A(. 2003). Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biology and Biochemistry, 35(1), 125-132.
Wang, Y., Wu, S., Chen, L., Wu, C., Yu, R., Wang, Q. & Zhao, X. (2012). Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemosphere, 88(4), 484-491.
Xiao, H., Zhou, Q.X. & Liang, J.D. (2004). Single and joint effects of acetochlor and urea on earthworm Esenia fetida populations in phaiozem. Environmental Geochemistry and Health, 26(2), 277-283.
Xiao, N., Jing, B., Ge, F. & Liu, X. (2006). The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions. Chemosphere, 62(8), 1366-1373.
Yasmin, S. & D’Souza, D. (2007). Effect of pesticides on the reproductive output of Eisenia fetida. Bulletin of environmental contamination and toxicology, 79(5), 529-532.
Yeardley Jr R.B, Gast, L.C. & Lazorchak, J.M. (1996). The potential of an earthworm avoidance test for evaluation of hazardous waste sites. Environmental Toxicology and Chemistry: An International Journal, 15(9), 1532-1537.
Zhou, Q.X., Zhang, Q.R. & Liang, J.D. (2006). Toxic effects of acetochlor and methamidophos on earthworm Eisenia fetida in phaiozem, northeast China. Journal of Environmental Sciences, 18(4), 741-745.
Zhou, S., Duan, C., Michelle, W.H.G., Yang, F. & Wang, X. (2011), Individual and combined toxic effects of cypermethrin and chlorpyrifos on earthworm. Journal of Environmental Sciences, 23(4), 676-680.
PDF