Sensitivity Analysis and Applications of Laplace Adomian Decomposition MethodIn Solving Fractional –Order Malaria Model

DOI: https://doi.org/10.33003/jobasr

Agbata, B.C.

Atabo, O .V.

Senewo, E.O.

Micheal B.D.

Ezugorie I.G.

Ahman, Q.O.

Abstract
This study explores the sensitivity analysis and implementation of the Laplace-Adomian Decomposition Method (LADM) in solving a fractional-order malaria transmission model utilizing the Caputo fractional derivative. A deterministic compartmental model comprising eight ordinary differential equations is formulated to capture the dynamics of malaria spread. Key mathematical properties of the model, including the positivity of solutions and the existence of an invariant region, are rigorously examined. Stability analysis reveals that the disease-free equilibrium remains locally stable when the basic reproduction number is less than one, based on the next-generation matrix approach. To approximate solutions of the fractional-order system, LADM is employed, generating a rapidly converging infinite series under appropriate conditions. Parameter values are estimated using MATLAB’s fmincon optimization algorithm, calibrated with empirical malaria data extracted from published sources. LADM integrates the Laplace transform with the Adomian Decomposition Method by first applying the Laplace transform, breaking down nonlinear terms via Adomian polynomials, and finally applying the inverse Laplace transform to derive the solution. The study successfully applies LADM to obtain approximate solutions for the malaria model and reaffirms that the disease-free equilibrium is stable when the reproduction number falls below one. Findings also show that enhancing treatment efficacy within the human population leads to a marked decline in malaria prevalence. Sensitivity analysis identifies key parameters that influence disease transmission, highlighting that reducing contact between susceptible individuals and infectious mosquitoes, alongside prompt treatment of infected individuals, is vital for disease control. Unlike previous models based solely on classical ADM, this work integrates the Laplace transform to improve both convergence speed and solution accuracy. Moreover, real malaria data from Nigeria is incorporated to ensure practical relevance and accuracy of the model.
References
Acheneje, G. O., Omale, D., Agbata, B. C., Atokolo, W., Shior, M. M., and Bolawarinwa, B. (2024). Approximate solution of the fractional order mathematical model on the transmission dynamics of the co-infection of COVID-19 and Monkeypox using Laplace-Adomian Decomposition method. IJMSS, 12(3), 17–51. Adeniyi, M. O., Amalare, A. A., Oke, S. I., and Salawu, S. O. (2024). Bifurcation analysis and global sensitivity index for malaria disease transmission dynamics: Information and treated bed nets control. International Journal of Biomathematics, 17(06), 2350060. Agbata, B. C., Raimonda D, Asante Mensa, F., Kwabi, P. A., Odeh J.O., Amoah Mensah, J., Meseda P.K and Obeng Denteh, W.,( 2025) Mathematical modelling of measles disease with double dose vaccination. Journal of Basic and Applied Sciences Research 3(3), 199–214. https://doi.org/10.4314/jobar.v3i3.22. Agbata, B. C., Agbebaku, D. F., Odo, C. E., Ojih, J. T., Shior, M. M., and Ezugorie, I. G. (2024). A mathematical model for the transmission dynamics of COVID-19 in Nigeria and its post-effects. International Journal of Mathematical Analysis and Modelling, 7(2), 523–547. https://tnsmb.org/journal/index.php/ijmam/article/view/191 Agbata, B. C., Obeng-Denteh, W., Agbebaku, D. F., Shior, M. M., Yahaya, D. J., and Danjuma, A. Y. (2024). Laplace-Adomian Decomposition Method for solving fractional-order mathematical model of monkeypox transmission dynamics. International Journal of Mathematical Analysis and Modelling, 7(2), 558–588. https://tnsmb.org/journal/index.php/ijmam/article/view/193 Agbata, B. C., Obeng-Denteh, W., Amoah-Mensah, J., Kwabi, P. A., Shior, M. M., Asante Mensa, F., and Abraham, S. (2024). Numerical solution of fractional order model of measles disease with double dose vaccination. DUJOPAS, 10(3b), 202–217. Agbata, B. C., Obeng-Denteh, W., Dervishi, R., Kwabi, P. A., Aal-Rkhais, H. A., Asente-Mensa, F., Ezugorie, I. G., and Arivi, S. S. (2024). Mathematical modeling and analysis of monkeypox transmission dynamics with treatment and quarantine interventions. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 10(4b), 78–96. https://www.ajol.info/index.php/dujopas/article/view/264210 Alzahrani, A. K., and Khan, M. A. (2022). The co-dynamics of malaria and tuberculosis with optimal control strategies. Filomat, 36(6), 1789–1818. https://doi.org/10.2298/FIL2206789A Ashley, E. A., Dhorda, M., Fairhurst, R. M., Amaratunga, C., Lim, P., Suon, S., and Dondorp, A. M. (2023). Spread of artemisinin resistance in Plasmodium falciparummalaria. The New England Journal of Medicine, 389(10), 947–958. Bhattacharya, S., Sharma, R., and Singh, M. (2023). Plasmodium and Mycobacterium tuberculosis: Immunological interplay and co-infection outcomes. Clinical Infectious Diseases, 75(1), 77–86. https://doi.org/10.1093/cid/ciad357 Bhatt, S., Weiss, D. J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., and Gething, P. W. (2022). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526(7572), 207–211. Bolarinwa, B., Thomas Onoja, Agbata, B. C., Omede, B. I., and Odionyenma, U. B. (2024). Dynamical analysis of HIV-TB coinfection in the presence of treatment for TB. Bulletin of Biomathematics, 2(1), 21–56. Cator, L. J., Benedict, M. Q., and Reddy, M. R. (2023). Environmental determinants of malaria transmission in East Africa: Climate, vectors, and parasites. International Journal of Parasitology, 53(4), 311–324. https://doi.org/10.1016/j.ijpara.2023.04.005 Chitnis, N., Hyman, J. M., and Cushing, J. M. (2008). Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology, 70(5), 1272–1296. Diethelm, K. (2022). The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Springer Science and Business Media. Draper, S. J., Sack, B. K., King, C. R., Nielsen, C. M., Rayner, J. C., and Higgins, M. K. (2022). Malaria vaccines: Recent advances and new horizons. Cell Host and Microbe, 30(2), 161–177. Ghosh, S., Banerjee, S., and Chakraborty, P. (2022). Multidrug-resistant tuberculosis and its global implications: Current strategies for detection and treatment. Global Health Action, 15(1), 204–213. https://doi.org/10.1080/16549716.2022.2054132 Haile, G. T., Koya, P. R., and Mosisa Legesse, F. (2025). Sensitivity analysis of a mathematical model for malaria transmission accounting for infected ignorant humans and relapse dynamics. Frontiers in Applied Mathematics and Statistics, 10, 1487291. Hemingway, J., Shretta, R., Wells, T. N., Bell, D., Djimde, A. A., Achee, N., and Qi, G. (2022). Tools and strategies for malaria control and elimination: What do we need to achieve a grand convergence in malaria? PLoS Biology, 14(3), e1002380. Ndii, M., Tong, S. Y., Andrews, R. M., McVernon, J., and Riley, T. V. (2020). Sensitivity analysis of a mathematical model of Plasmodium falciparum malaria transmission. Mathematical Biosciences, 322, 108292. Ngonghala, C. N., Del Valle, S. Y., Zhao, R., Mohammed-Awel, J., and Gumel, A. B. (2021). Quantifying the impact of human mobility on malaria dynamics and control. Journal of Theoretical Biology, 505, 110398. Odeh, J. O., Agbata, B. C., Ezeafulukwe, A. U., Madubueze, C. E., Acheneje, G. O., and Topman, N. N. (2024). A mathematical model for the control of chlamydia disease with treatment strategy. Journal of Mathematical Analysis and Research, 7(1), 1–20. Olumuyiwa, J. P., Sumit, K., Nitu, K., Festus, A. O., Kayode, O., and Rabiu, M. (2022). Transmission dynamics of monkeypox virus: A mathematical modeling approach. Modeling Earth System and Environment. https://doi.org/10.1007/s40808-021-013313-2 Omeje, D., Acheneje, G., Odiba, P., and Bolarinwa, B. (2024). Modelling the transmission dynamics of the coinfection of malaria and tuberculosis with optimal control strategies cost effectiveness analysis. Research Square. Preprint. https://doi.org/10.21203/rs.3rs-5312505/v1 Pamungkas, Y., and Eljatin, D. S. (2024). Hyperparameter tuning of EfficientNet method for optimization of malaria detection system based on red blood cell image. Jurnal Sisfokom (Sistem Informasi dan Komputer), 13(3), 360–368. Parham, P. E., and Michael, E. (2022). Modeling the effects of weather and climate change on malaria transmission. Environmental Health Perspectives, 118(5), 620–626. Reiner, R. C., Geary, M., Atkinson, P. M., Smith, D. L., and Tatem, A. J. (2023). A systematic review of mathematical models of mosquito-borne pathogen transmission: 2000–2020. Epidemics, 41, 100547. Ryan, S. J., Carlson, C. J., Mordecai, E. A., and Johnson, L. R. (2023). Global expansion and redistribution of Aedes mosquitoes due to climate change. Nature Communications, 14(1), 1–10. World Health Organization. (2023). World malaria report 2023. https://www.who.int/publications/i/item/9789240068487
PDF