On Substructures and Root Sets in Antimultigroups and Their Direct Products
DOI: https://doi.org/10.33003/jobasr
Chinedu Peter
Funmilola Balogun
Adeyemi Omotosho Adewumi
Abstract
This paper presents an extension of the direct product operation to antimultigroups. We prove that the direct product of two antimultigroups is itself an antimultigroup, preserving the defining axioms under Cartesian pairing. We introduce and analyze the main substructures of antimultigroups. These substructures include strong and weak upper and lower cuts, and show that each type of cut forms a sub-antimultigroup. Also, we examine the behavior of root sets and the structural connections between cuts under union and intersection. This leads to the establishment that such operations yield sub-antimultigroups under suitable conditions. These findings contribute to a deeper understanding of the structure of antimultigroups. Thus, it lays the groundwork for further developments in antimultigroup theory.
References
Awolola, Johnson Aderemi (2019). On multiset relations Aktas, H. and Cagman, N. (2007). Soft sets and soft groups. Information Science, 177:2726–2735.
Biswas R, (1989). Intuitionistic fuzzy subgroups.Mathematical Forum, 10:37-46.
Blizard, W. D. (1991). The development of multiset theory. Modern Logic, 1:319–352.
DeBruijn, N. G. (1983). Denumerations of rooted trees and multisets. Discrete Applied Mathematics, 6(1):25–33.
Dresher, M. and Ore, O. (1938). Theory of multigroups. American Journal of Mathematics, 60:705–733.
Ejegwa P.A. (2020). Concept of Anti Multigroups and Properties. Earthline Journal of Mathematical Sciences, ISSN (Online): 2581-8147, 4(1): 83-97.
Ejegwa P.A and Ibrahim A.M (2017). Direct product of multigroups and its generalization. International Journal of Mathematics and Combinatorics, 4:1-18.
Ibrahim, A. M. and Awolola,J. A., (2023), Amgroups, ActaMathematicaAcademiaePaedagogicaeNy´ıregyh´aziensis, 34, 150–155.
Kleiner, I. (1986). The evolution of group theory: a brief survey. Mathematics Magazine, 59(4):195–215.
Knuth, D. (1981). The art of computer programming. Semi Numerical Algorithm, Second Edition, 2, Addison-Wesley, Reading, Massachusetts.
Nazmul, S. K., Majumdar, P., and Samanta, S. K. (2013). On multisets and multigroups. Annals of Fuzzy Mathematics and Informatics, 6(3):643–656.
Peter, C., & Abdullahi, B. (2025a). Rethinking Multigroup: An Introductory Alternative Approach in Singh’s Perspective. FUDMA Journal of Sciences, 9(4), 83-86.
Peter, C., & Abdullahi, B. (2025b). Singh’s Perspective on Multiset Theory- a Conservative Extension of Standard Set Theory. FUDMA Journal of Sciences, 9(4), 74-77.
Peter, C., (2025). On Singh’s Dressed Epsilon Perspective of Multigroup. Journal of Basics and Applied Sciences Research, 3(3), 16-21. https://dx.doi.org/10.4314/jobasr.v3i3.3.
Peter, C., Balogun, F., Adeyemi O. (2024) An Exploration of Antimultigroup Extensions, FUDMA Journal of Sciences, Vol. 8 No. 5, pp 269 - 273.
Rosenfeld, A. (1971). Fuzzy groups. Journal of Mathematical Analysis and Application, 35:512–517.
Shinoj, T. K. and Sunil, J. J. (2015). Intuitionistic fuzzy multigroups. Annals of Pure and Applied Mathematics, 9(1):133–143.
Shinoj, T. K., Baby, A., and Sunil, J. J. (2015). On some algebraic structures of fuzzy multisets. Annals of Fuzzy Mathematics and Informatics, 9(1):77–90.
Singh, D. (1994). A note on the development of multisets theory. Modern Logic, 4:405–406.
Singh, D., Ibrahim, A. M., Yohanna, T., and Singh, J. N. (2007). An overview of the applications of multisets. Novi Sad Journal of Mathematics, 37(2):73–92.
Singh, D., Ibrahim, A. M., Yohanna, T., and Singh, J. N. (2008). A systematization offundamentals of multisets. LecturasMathematicas, 29:33–48.
Syropoulos, A. (2001). Mathematics of multisets. Springer-Verlag Berlin Heidelberg.
PDF