Semi-Analytical Approach to a Fractional-Order Model for the Dynamics and Control of Typhoid Fever
DOI: https://doi.org/10.33003/jobasr
Agbata, B. C.
Asante-Mensa, F.
Abah, E.
Kwabi, P. A.
Amoah-Mensah, J.
Shior, M. M.
Meseda, P. K.
Topman, N. N.
Obeng-Denteh, W.
Abstract
The persistent threat of typhoid fever to global public health is most severe in regions where sanitation is poor and safe drinking water is scarce. The illness, which is caused by Salmonella Typhi, can result in systemic infection and serious complications if not treated promptly. Populations at greater risk, particularly in low-resource environments, are especially affected due to inadequate healthcare facilities. This research presents a novel fractional-order mathematical model to assess the transmission dynamics of typhoid fever, incorporating memory effects and intricate transmission patterns that traditional integer-order models fail to capture. The study uniquely applied the Adams-Bashforth method alongside fractional-order derivatives to obtain the model's solution, offering a more accurate representation of disease progression. Sensitivity analysis showed the critical roles of treatment intervention , reducing contact rate and improved sanitation in lowering the prevalence of the disease. Furthermore, the study assesses how public health initiatives, such as enhanced water quality, hygiene education, and advancements in rapid diagnostics, influence the management of typhoid fever. Simulation results suggest that a comprehensive strategy such as effective management of contaminated agents, efficient treatment, and strengthened public health systems can greatly mitigate transmission and enhance disease management outcomes.
References
Abah, E., Bolaji, B., Atokolo, W., Acheneje, G. O., Omede, B. I., Amos, J., & Omeje, D. (2025). Mathematical fractional model for the dynamics and control of diphtheria transmission. International Journal of Mathematical Analysis and Modelling, 7(2). https://tnsmb.org/journal/index.php/ijmam/article/view/182.
Acheneje, G. O., Omale, D., Agbata, B. C., Atokolo, W., Shior, M. M., & Bolawarinwa, B. (2024). Approximate solution of the fractional order mathematical model on the transmission dynamics of the co-infection of COVID-19 and monkeypox using the Laplace–Adomian decomposition method. IJMSS, 12(3), 17–51.
Agbata, B. C., Obeng Denteh, W., Dervish, R., Kwabi, P. A., Aal Rkhais, H. A., Asante Mensa, F., Ezugorie, I. G., & Arivi, S. S. (2024). Mathematical modeling and analysis of monkeypox transmission dynamics with treatment and quarantine interventions. DUJOPAS, 10(4b), 78–96.
Agbata, B. C., Obeng-Denteh, W., Amoah-Mensah, J., Kwabi, P. A., Shior, M. M., Asante-Mensa, F., & Abraham, S. (2024). Numerical solution of fractional order model of measles disease with double dose vaccination. Dutse Journal of Pure and Applied Sciences (DUJOPAS), 10(3b), 202–217. https://www.ajol.info/index.php/dujopas/article/view/281624.
Agbata, B. C., Shior, M. M., Obeng-Denteh, W., Omotehinwa, T. O., Paul, R. V., Kwabi, P. A., & Asante-Mensa, F. (2023). A mathematical model of COVID-19 transmission dynamics with effects of awareness and vaccination program. Journal of Ghana Science Association, 21(2), 59–61. https://www.researchgate.net/publication/379485392 _
Ali, M., Zhang, X., & Wei, L. (2024). Fractional-order epidemiological model for tuberculosis with vaccination. Scientific Reports, 14(1), 73392. https://doi.org/10.1038/s41598-024-73392-x.
Baskonus, H. M., & Bulut, H. (2015). On the numerical solutions of some fractional ordinary differential equations by the fractional Adams-Bashforth-Moulton method. Open Mathematics, 13, 1.
Bolaji, B., Onoja, T., Agbata, B. C., Omede, B. I., & Odionyenma, U. B. (2024). Dynamical analysis of HIV-TB co-infection transmission model in the presence of treatment for TB. Bulletin of Biomathematics, 2(1), 21–56. https://doi.org/10.59292/bulletinbiomath.2024002.
Diethelm, K. (1999). The FracPECE subroutine for the numerical solution of differential equations of fractional order.
Gomez, F., Ramirez, J., & Castillo, D. (2023). Fractional-order SEIR model for COVID-19 dynamics in Argentina. arXiv Preprint, arXiv:2104.02853. https://arxiv.org/abs/2104.02853.
Kim, J. H., Mogasale, V., Im, J., Ramani, E., Marks, F., & Ochiai, R. L. (2023). Typhoid fever: A comprehensive review of the literature. Nature Reviews Disease Primers, 9(1), Article 12. https://doi.org/10.1038/s41572-023-00480-z.
Kumar, P., Kumar, S., Alkahtani, B. S. T., & Alzaid, S. S. (2024). A mathematical model for simulating the spread of infectious disease using the Caputo-Fabrizio fractional-order operator. AIMS Mathematics, 9(11), 30864–30897. https://doi.org/10.3934/math.20241490.
Liu, B., Farid, S., Ullah, S., Altanji, M., Nawaz, R., & Teklu, S. W. (2023). Mathematical assessment of Monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach. Scientific Reports. http://dx.doi.org/10.1038/541598-023-40745-x.
Odeh, J. O., Agbata, B. C., Ezeafulukwe, A. U., Madubueze, C. E., Acheneje, G. O., & Topman, N. N. (2024). A mathematical model for the control of chlamydia disease with treatment strategy. Journal of Mathematical Acumen and Research, 7(1), 45–60. https://www.researchgate.net/publication/381278254.
Odeh, J. O., Agbata, B. C., Ezeafulukwe, A. U., Madubueze, C. E., Acheneje, G. O., & Topman, N. N. (2024). A mathematical model for the control of chlamydia disease with a treatment strategy. Journal of Mathematical Analysis and Research, 7(1), 1–20.
Odeh, J. O., Agbata, B. C., Tijani, K. A., & Madubueze, C. E. (2024). Optimal control strategies for the transmission dynamics of Zika virus: With the aid of Wolbachia-infected mosquitoes. Numerical and Computational Methods in Sciences & Engineering, 5(1), 1–25. https://doi.org/10.18576/ncmse/050101.
Omowumi, F. L., Tunde, T. Y., & Afeez, A. (2024). On mathematical modeling of optimal control of typhoid fever with efficiency analysis. Journal of the Nigerian Society of Physical Sciences, 6(3), 2057. https://journal.nsps.org.ng/index.php/jnsps/article/view/2057.
Patel, R., Sainani, P., Brar, M., Patel, R., Li, X., Drozd, J., Chishtie, F. A., Benterki, A., Scott, T. C., & Valluri, S. R. (2023). Modelling of COVID-19 using fractional differential equations. arXiv Preprint, arXiv:2307.16282. https://arxiv.org/abs/2307.16282.
Sharma, P., Gupta, R., & Kumar, S. (2024). Integrating awareness and fractional-order delay differential equations in COVID-19 modeling. BMC Medical Research Methodology, 24(1), Article 2452. https://doi.org/10.1186/s12874-024-02452-7.
Tadesse, G., Hassan, M., & Ahmed, R. (2024). Fractional-order modeling of COVID-19 and malaria co-infection. Bulletin of Mathematical Biology, 86(1), 15. https://doi.org/10.1007/s11538-024-0015.
Tadesse, G., Tadesse, T., & Tadesse, M. (2024). Fractional-order epidemic model for measles infection. Frontiers in Public Health, 12, Article 1357131. https://doi.org/10.3389/fpubh.2024.1357131.
Tadesse, G., Tadesse, T., & Tadesse, M. (2024). Prevalence of typhoid fever and its associated factors among febrile patients in Ethiopia: A cross-sectional study. Frontiers in Public Health, 12, Article 1357131. https://doi.org/10.3389/fpubh.2024.1357131.
The Guardian. (2024, September 24). 'Drug-resistant typhoid is the final warning sign': Disease spreads in Pakistan as antibiotics fail. https://www.theguardian.com/global-development/2024/sep/24/drug-resistant-typhoid-disease-pakistan-antibiotics-superbugs-children.
VandenDriessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48.
World Health Organization. (2023). Typhoid. https://www.who.int/news-room/fact-sheets/detail/typhoid.
PDF