Deploying Machine Learning Methods for Health Monitoring and Cardiovascular Disease Prediction

DOI: https://doi.org/10.33003/jobasr

Anikwe, C. V.

Nweke, H. F.

Ikegwu, A. C.

Ndukwe, O. E.

Abstract
Smart healthcare has increased to meet the needs of the growing human population and medical expenses. People are all hurrying to catch up with work schedules, academic appointments, and social engagements, especially in this jet age. These often happen at the detriment of our health. Healthcare services, especially those that provide optimal healthcare delivery, face many problems, such as the ineffective provision ofhealth monitoring applications andless emphasis on disease prediction systems.Severalresearchstudies have been carried out in an attempt to proffer solutions to the peculiar problems; however, the problem persists. Therefore, this paper develops a Cardiovascular disease prediction system with specific objectives: implement data analysis for disease prediction using a k-Nearest Neighbors (k-NN)-based machine learning system; evaluate the performance of the developed cardiovascular disease prediction system with existing health monitoring systems. The k-Nearest Neighbors was utilized using a 1025 dataset and 18 attributes collected from the UCI machine learning repository. The results show that k-NN achieved an accuracy of 99.21%. k-Nearest Neighbors algorithm is a non-parametric machine learning that majority voting to classify new case of cardiovascular disease, and non-sensitive to noise and outlier. The proposed model is higher than the existing system, which shows an average accuracy result of 84.63%. The developed machine learning approach will guide healthcare practitioners on the use of machine learning for cardiovascular disease diagnosis and prediction.
References
Ali, M. H., Khan, D. M., Jamal, K., Ahmad, Z., Manzoor, S., & Khan, Z. (2021). Prediction ofMultidrug‐Resistant Tuberculosis Using Machine Learning Algorithms in SWAT, Pakistan. Journal of healthcare engineering, 2021(1), 2567080.https://doi.org/10.1155/2021/2567080 Anikwe, C. V., Nweke, H. F., Ikegwu, A. C., Egwuonwu, C. A., Onu, F. U., Alo, U. R., & Teh, Y. W. (2022). Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and future prospect. Expert Systems with Applications, 202, 117362. https://doi.org/10.1016/j.eswa.2022.117362 Ayón, C., Ramos Santiago, J., & López Torres, A. S. (2020). Latinx undocumented older adults, health needs and access to healthcare. Journal of Immigrant and Minority Health, 22, 996-1009. https://doi.org/10.1007/s10903-019-00966-7 De Fazio, R., Mastronardi, V. M., De Vittorio, M., & Visconti, P. (2023). Wearable sensors and smart devices to monitor rehabilitation parameters and sports performance: an overview. Sensors, 23(4), 1856.https://doi.org/10.3390/s23041856. Deshpande, U. U., & Kulkarni, M. A. (2017). IoT-based real-time ECG monitoring system using Cypress WICED. International Journal of advanced research in electrical, electronics and instrumentation engineering, 6(2). https://doi.org/10.15662/IJAREEIE.2017.0602035. El-deep, S. E., Abohany, A. A., Sallam, K. M., & El-Mageed, A. A. A. (2025). A comprehensive survey on impact of applying various technologies on the Internet of Medical Things. Artificial Intelligence Review, 58(3), 86.https://doi.org/10.1007/s10462-024-11063-z. Enshaeifar, S., Zoha, A., Markides, A., Skillman, S., Acton, S. T., Elsaleh, T., ... & Barnaghi, P. (2018). Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques. PloS one, 13(5), e0195605. https://doi.org/10.1371/journal.pone.0195605 Fisk, A. D., Czaja, S. J., Rogers, W. A., Charness, N., & Sharit, J. (2020). Designing for older adults: Principles and creative human factors approaches. CRC press. https://doi.org/10.1201/b22189. Islam, M. M., Haque, M. R., Iqbal, H., Hasan, M. M., Hasan, M., & Kabir, M. N. (2020). Breast cancer prediction: a comparative study using machine learning techniques. SN Computer Science, 1(5), 290.https://doi.org/10.1007/s42979-020-00305-w. Islam, M. N., Raiyan, K. R., Mitra, S., Mannan, M. R., Tasnim, T., Putul, A. O., & Mandol, A. B. (2023). Predictis: an IoT and machine learning-based system to predict risk level of cardio-vascular diseases. BMC Health Services Research, 23(1), 171.https://doi.org/10.1186/s12913-023-09104-4. Marino, M. M., Rienzo, M., Serra, N., Marino, N., Ricciotti, R., Mazzariello, L., ... & Caracciolo, A. L. (2020). Mobile screening units for the early detection of breast cancer and cardiovascular disease: a pilot telemedicine study in Southern Italy. Telemedicine and e-Health, 26(3), 286-293.https://doi.org/10.1089/tmj.2018.0328. Menon, S. P., Shukla, P. K., Sethi, P., Alasiry, A., Marzougui, M., Alouane, M. T. H., & Khan, A. A. (2023). An intelligent diabetic patient tracking system based on machine learning for E-health applications. Sensors, 23(6), 3004.https://doi.org/10.3390/s23063004. Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H., & Raad, A. (2022). Cardiovascular events prediction using artificial intelligence models and heart rate variability. Procedia Computer Science, 203, 231-238. https://doi.org/10.1016/j.procs.2022.07.030. Nadakinamani, R. G., Reyana, A., Kautish, S., Vibith, A. S., Gupta, Y., Abdelwahab, S. F., & Mohamed, A. W. (2022). [Retracted] Clinical Data Analysis for Prediction of Cardiovascular Disease Using Machine Learning Techniques. Computational intelligence and neuroscience, 2022(1), 2973324.https://doi.org/10.1155/2022/2973324. Olopade, I. A., Akinwumi, T. O., Philemon, M. E., Mohammed, I. T., Sangoniyi, S. O., Adeniran, G. A., ... & Adesanya, A. O. (2024). Analyzing Global Stability of M-Pox Disease Dynamics: Mathematical Insights into Detection and Treatment Strategies. Journal of Basics and Applied Sciences Research, 2(1), 61-76. https://doi.org/10.33003/jobasr-2024-v2i1-25 Ozdener, M. H., Donadoni, M., Cicalese, S., Spielman, A. I., Garcia-Blanco, A., Gordon, J., &Sariyer, I. K. (2020). Zika virus infection in chemosensory cells. Journal of neurovirology, 26, 371-381. https://doi.org/10.1007/s13365-020-00835-2 Ramalingam, V. V., Dandapath, A., & Raja, M. K. (2018). Heart disease prediction using machine learning techniques: a survey. International Journal of Engineering & Technology, 7(2.8), 684-687.https://doi.org/10.14419/ijet.v7i2.8.10557. Sada, I., Obunadike, G. N., & Abubakar, M. (2025). Machine learning-based framework for predicting user satisfaction in e-learning systems. Journal of Basics and Applied Sciences Research, 3(2), 78-85. https://doi.org/10.33003/jobasr Singh, P., Singh, N., Singh, K. K., & Singh, A. (2021). Diagnosis of disease using machine learning. In Machine learning and the internet of medical things in healthcare (pp. 89-111). Academic Press.https://doi.org/10.1016/B978-0-12-821229-5.00003-3. Thaung, S. M., Tun, H. M., Win, K. K. K., Than, M. M., & Phyo, A. S. S. (2020). Exploratory data analysis based on remote health care monitoring system by using IoT. Communications, 8(1), 1-8.https://doi.org/10.11648/j.com.20200801.11. Vesnic-Alujevic, L., Breitegger, M., & Guimarães Pereira, Â. (2018). ‘Do-it-yourself’healthcare? Quality of health and healthcare through wearable sensors. Science and engineering ethics, 24, 887-904.https://doi.org/10.1007/s11948-016-9771-4. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., ... & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265-269.
PDF