Frequency of Kdr Mutation, Permethrin and DDT Resistance in Anopheles Mosquito Vectors of Lymphatic Filariasis from Old Katsina Province Nigeria
DOI: https://doi.org/10.33003/jobasr
Lawal Nura
Waliyat T. Omoniyi
Imam U. Nasir
Abstract
It has been previously reported that insecticide resistance among the vectors of malaria and lymphatic filariasis (LF) exist in the African continent which could unintentionally affect different species of Anopheles mosquitoes found in Northern Nigeria. The aim of this study is to identify the Anopheles mosquito species and its profile insecticide resistance. The study was carried out in Batagarawa town. Using a mechanical aspirator, blood-feeding mosquitoes were captured indoors and identified morphologically and molecularly. The WHO procedure was followed for insecticide susceptibility bioassay using F1 mosquitoes, and PCR was used to check for the existence of the kdr mutation in Anopheles mosquitoes that had survived exposure to permethrin. Anopheles mosquitoes were identified as Anopheles gambiae s.s and Anopheles coluzzi. Insecticide susceptibility test revealed that Anopheles gambiae s.l from Batagarawa town was more susceptible to deltamethrin, bendiocarb, propoxur, and malathion recorded 92.3%, 93.6% and 89% after 24 hours post exposure respectively, but resistant to permethrin and DDT recorded 18%, 42.11% after 24 hours post exposure respectively. The execution of effective vector control strategy can be guided by the presence of permethrin and DDT cross resistance in Anopheles gambiae s.l complex.
References
Antonio-Nkondjio, C., Fossog, B.T., Ndo, C., Djantio, B.M., Togouet, S.Z., Awono-Ambene, P.; Costantini, C., Wondji, C.S.; Ranson, H. (2011). “Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaounde (Cameroon)”. Influence of urban agriculture and pollution. Malar J; 10:154.
Awolola, T.S., Oduala, A.O., Oyewole, I.O., Obensa, J.B., Amajoh, C.N., Koekemoer, L.L., Coetzee, M. (2007). Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae s.s. in south-western Nigeria. J Vector Borne Dis; 44(3):181–188.
Czeher, C., Labbo, R., Arzika, I., Duchemin, J. (2008). Evidence of increasing Leu–Phe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malar J;7:189.
Dabire, K.R., Diabate, A., Namountougou, M., Djogbenou, L., Wondji, C. (2012). Trends in Insecticide Resistance in Natural Populations of Malaria Vectors in Burkina Faso, West Africa: 10 Years’ Surveys. In: Perveen F, editors. Insecticides - Pest Engineering; 479–502.
Dabire, K. R., Diabate, A., Namountougou, M., Toe, K.H., Ouari, A. (2009). Distribution of pyrethroid and DDT resistance and the L1014F kdr mutation in Anopheles gambiae s.l. from Burkina Faso (West Africa). Trans R Soc Trop Med Hyg; 103: 1113–1120.
Diabate, A., Baldet, T., Chandre, C., Dabire, K. R., Kengne, P., Guiguemde, T.R., Simard, F., Guillet, P., Hemingway, J., Hougard, J. M. (2003). kdr mutation, a genetic marker to assess events of introgression between the molecular M and S forms of Anopheles gambiae (Diptera: Culicidae) in the tropical savannah area of West Africa. J Med Entomol, 40(2): 195–198.
Djogbenou, L., Pasteur, N., Bio-Bangana, S., Baldet, T., Irish, S. R., Akogbéto, M. (2010). Malaria vectors in the Republic of Benin: distribution of species and molecular forms of the Anopheles gambiae complex. Acta Trop; 114: 116–22.
Della Torre, A., Fanello, C., Akogbeto, M., Dossou-Yovo, J., Favia, G., Petrarca, V., Coluzzi, M. (2001). Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Molecular Biology; 10: 9 - 18.
Feyereisen, R. (2015). Insect P450 inhibitors and insecticides: challenges and opportunities. Pest management science; 71: 793–800.
Hemingway, J.; Ranson, H. (2000). Insecticide resistance in insect vectors of human disease. Annu Rev Entomol; 45:371–391.
Himeidan, Y.E., Abdel Hamid, M.M., Jones, C.M., Ranson, H. (2011). “Extensive permethrin and DDT resistance in Anopheles arabiensis from eastern and central Sudan”. Parasit Vectors; 4:154.
Ibrahim, S. S., Manu, Y. A., Tukur, Z., Irving, H. &Wondji, C. S. (2014). High frequency of kdr L1014F is associated with pyrethroid resistance in Anopheles coluzzii in Sudan savannah of northern Nigeria. BMC infectious diseases; 14: 441.
Ibrahim, S.S., Mukhtar, M.M., Datti, J. A., Irving, H., Kusimo, M.O., Tchapga, W., Lawal, N., Sambo, F.I., Wondji, C.S. (2019). Temporal escalation of Pyrethroid Resistance in the major malaria vector Anopheles coluzzii from Sahelo-Sudanian Region of northern Nigeria. Nature; 9: 7395.
Kristan, M., Fleischmann, H., della Torre, A., Stich, A., Curtis, C.F. (2003). Pyrethroid resistance/susceptibility and differential urban/rural distribution of Anopheles arabiensis and An. gambiae s.s. malaria vectors in Nigeria and Ghana. Medical and Veterinary Entomology; 17: 326–332.
Kwiatkowska, R.M., Platt, N., Poupardin, R., Irving, H., Dabire, R.K., Mitchell, S., Jones, C.M., Diabate, A.; Ranson, H., Wondji, C.S. (2013). Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallee du Kou, Burkina Faso. Gene. 2013; 519(1): 98–106.
Livak, K.J. (1984). Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics; 107(4):611–634.
Martinez-Torres, D.; Chandre, F.; Williamson, M.S.; Darriet, F.; Berge, J.B.; Devonshire, A.L.; Guillet, P.; Pasteur, N.; Pauron, D. (1998). Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol; 7(2):179–184.
Ndiath, M.O.; Sougoufara, S.; Gaye, A.; Mazenot, C.; Konate, L.; Faye, O.; et al. (2012). Resistance to DDT and Pyrethroids and increased kdr mutation frequency in An. gambiae after the implementation of permethrin-treated nets in Senegal. PLoS One;7:e31943.
Nwoke, B.E.B., Nwoke, E.A., C. N. Ukaga., Nwachukwu, M.I. (2010). Epidemiological characteristics of Bancroftian filariasis and the Nigerian environment. Journal of Public Health and Epidemiology; 2(6): 113-117.
Okorie, P.N., Ademowo, O.G., Irving, H.; Kelly-Hope, L.A., Wondji, C.S. (2015). Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, Southwest Nigeria. Medical and Veterinary Entomology; 29.44–50.
Péka, M. (2001). Evaluation de la sensibilité aux pyréthrinoïdes des populations d’Anophelesgambiaes.l. de la zone côtière de Côte d’Ivoire. Mémoire DEA: CEMV, Université de Bouaké; 57.
Prasittisuk, M. (1994). Efficacy of three insecticides against Anopheles dirus and Anopheles minimus, the major malaria vectors, in Kanchanaburi Province Thailand. “Thailand Mahidol University”. (Ph. D. Thesis).
Rogan, W. J., Chen, A. (2005) Health risks and benefits of bis(4-chlorophenyl)- 1,1,1-trichloroethane (DDT). Lancet; 366(9487): 763–773.
Rousseau, D., Riveron, J.M., Yessoufou, A., Tchigossou, A., Akoton, R., Irving, H., Djegbe, I., Moutairou, K., Adeoti, R., Tamò, M., Manyong, V., Wondji, C. S. (2016). Multiple insecticide resistance in an infected population of the malaria vector Anopheles funestus in Benin. Parasites & Vectors; 9: 453.
Santolamazza, F., Calzetta, M., della Torre, A. (2008). Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa. Malar J; 7(7): 74.
Taylor, M. J., Hoeruf, A., Bockarie, M. (2010). Lymphatic filariasis and onchocerciasis. The Lancet;377: 1175-1185.
Weill, M., Chandre, F., Brengues, C., Manguin, S., Akogbeto, M., Pasteur, N., Guillet, P., Raymond, M. (2000). The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Mol Biol;9(5): 451–455.
Wondji, C., Simard, F., Petrarca, V., Etang, J., Santolamazza, F., Della Torre, A. & Fontenille, D. (2005). Species and populations of the Anopheles gambiae complex in Cameroon with special emphasis on chromosomal and molecular forms of Anopheles gambiae s.s.. Journal of Medical Entomology; 42: 998–1005.
World Health Organization. (2015). Lymphatic Filariasis: Monitoring and Epidemiological Assessment of Mass Drug Administration; htt://www.who.int//lymphatic filariasis/epidemiology/en/.
World Health Organization. (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization.
World Health Organization. (2019). WHO updates fact sheet on Lymphatic Filariasis; https://communitymedicine4asses.wordpress.com/2019/10/6/who-updates-fact-sheet-on-lymphatic-filariasis.
Yadouleton, A.W., Padonou, G., Asidi, A., Moiroux, N., Banganna, S., Corbel. V. (2010). Insecticide resistance status in Anopheles gambiae in southern Benin. Malar J; 9(1): 83.
Yewhalaw, D., Wassie, F., Steurbaut, W., Spanoghe, P., Van Bortel, W., Danis, L., Tessema, D.A., Getachew, Y., Coosemans M., Duchateau, L., Speybroeck, N. (2011). Multiple insecticide resistance; an impediment to insecticide-based malaria vector control program. PLoS ONE; 6: 1-10.137/journal.Pone.0016066.
PDF