Assessments of Phytochemical and Nutritional Compositions of Carica papaya seeds, Citrullus lanatus seeds, and Syzygiumaromaticum buds
DOI: https://doi.org/10.33003/jobasr
Karima M. Rabiu
Lawal Nura
Aderounmu Ibrahim Ganiyu
Abstract
Plant-derived bioactive compounds have recently attracted considerable interest due to their nutritional and possible medicinal benefits. This study investigated the phytochemical and nutritional composition of Carica papaya seeds, Citrullus lanatus seeds, and Syzygiumaromaticum buds. Qualitative and quantitative phytochemical analyses revealed distinct profiles: papaya seeds exhibited exceptionally high phenolic content (62.33±2.33) and alkaloids (45.80±0.00); watermelon seeds contained remarkable flavonoid concentrations (32.91±0.01); and clove buds were rich in tannins (14.37±3.37) and eugenol (35.05±0.00). Proximate analysis showed watermelon seeds possessed the highest protein (17.70±0.80%) and lipid content (46.65±0.25%), while papaya seeds contained the highest fibre (21.15±0.25%) and ash content (8.83±0.08%). Mineral analysis demonstrated clove buds were superior sources of calcium (116.25±3.25), magnesium (185.85±0.05), manganese (22.32±0.00), iron (9.45±0.00), potassium (120.11±1.21), and sodium (61.48±0.08). Watermelon seeds excelled in zinc content (5.18±0.98), while papaya seeds contained the highest phosphorus (218.35±2.35) and copper (0.97±0.02) levels. These findings suggest these plant materials possess complementary nutritional profiles with potential applications in functional foods and nutraceuticals targeting specific health conditions or nutrient deficiencies.
References
Achukwu, N. (2022). Anitfungal and Phytochemical Screening of Carica Papaya Seed Extract. Sokoto Journal of Medical Laboratory Science, 7(4).
Adeoye, R. I., Olopade, E. T., Olayemi, I. O., Okaiyeto, K., & Akiibinu, M. O. (2024). Nutritional and therapeutic potentials of Carica papaya Linn. seed: A comprehensive review. Plant Science Today, 11(2), 671–680.
Agbaje, E. O. (2008). Gastrointestinal effects of Syzigiumaromaticum (L) Merr. & Perry (Myrtaceae) in animal models. NIgerian quarterly journal of hospital medicine, 18(3), 137-141.
Aghababaei, F., & Hadidi, M. (2023). Recent advances in potential health benefits of quercetin. Pharmaceuticals, 16(7), 1020.
Agoreyo, B. O., Obansa, E. S., & Obanor, E. O. (2012). Comparative nutritional and phytochemical analyses of two varieties of Solanum melongena. Science World Journal, 7(1), 5-8.
Ajiboye, T. O., Mohammed, A. O., Bello, S. A., Yusuf, I. I., Ibitoye, O. B., Muritala, H. F., & Onajobi, I. B. (2016). Antibacterial activity of Syzygiumaromaticum seed: Studies on oxidative stress biomarkers and membrane permeability. Microbial Pathogenesis, 95, 208-215.
Alrumaihi, F., Almatroodi, S. A., Alharbi, H. O. A., Alwanian, W. M., Alharbi, F. A., Almatroudi, A., & Rahmani, A. H. (2024). Pharmacological potential of kaempferol, a flavonoid in the management of pathogenesis via modulation of inflammation and other biological activities. Molecules, 29(9), 2007.
AOAC. (1995). Official methods of analysis of the association of official’s analytical chemists, 17th edn. Association of Official Analytical Chemists, Arlington, VA.
AOAC. (1999). Official methods of analysis of the association of official’s analytical chemists, 17th edn. Association of Official Analytical Chemists, Arlington, VA.
AOAC. (2000). Official methods of analysis of the association of official’s analytical chemists, 17th edn. Association of Official Analytical Chemists, Arlington, VA.
AOAC. (2003). Official methods of analysis of the association of official’s analytical chemists, 17th edn. Association of Official Analytical Chemists, Arlington, VA.
Chen, K., Wu, S., Guan, Y., Ma, Y., Huang, Y., Liu, X., ... & Zhang, G. (2023). Changes in gut microbiota linked to a prevention of cardiac remodeling induced by hypertension in spontaneously hypertensive rats fed a pawpaw fruit diet. Heliyon, 9(5).
Corbineau, F. (2024). The effects of storage conditions on seed deterioration and ageing: How to improve seed longevity. Seeds, 3(1), 56-75.
Dashti, M. G., & Khan, M. S. S. (2022). Herbal Remedies for Lifestyle Diseases: Managing and Preventing Diabetes, Obesity, and Cardiovascular Conditions. Australian Herbal Insight, 5(1), 1-9.
Dhyani, P., Quispe, C., Sharma, E., Bahukhandi, A., Sati, P., Attri, D. C., ... & Cho, W. C. (2022). Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer cell international, 22(1), 206.
Diop, A., Sarr, S. O., Sall, A. B., Niass, O., Ndiaye, B., & Diop, Y. M. (2020). Nutritional and antioxidant potential of seeds from two Cucurbitaceae species from Senegal. European Journal of Chemistry, 11(4), 364-369.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
Eke, R., Ejiofor, E., Oyedemi, S., Onoja, S., &Omeh, N. (2021). Evaluation of nutritional composition of Citrullus lanatusLinn.(watermelon) seed and biochemical assessment of the seed oil in rats. Journal of Food Biochemistry, 45(6), e13763.
Elboughdiri, N., Lakikza, I., Boublia, A., Aouni, S. I., Hammoudi, N. E. H., Georgin, J., ... & Benguerba, Y. (2024). Application of statistical physical, DFT computation and molecular dynamics simulation for enhanced removal of crystal violet and basic fuchsin dyes utilizing biosorbent derived from residual watermelon seeds (Citrullus lanatus). Process Safety and Environmental Protection, 186, 995-1010.
El-Saber Batiha, G., Alkazmi, L. M., Wasef, L. G., Beshbishy, A. M., Nadwa, E. H., & Rashwan, E. K. (2020). SyzygiumaromaticumL.(Myrtaceae): traditional uses, bioactive chemical constituents, pharmacological and toxicological activities. Biomolecules, 10(2), 202.
Enemor, V., Oguazu, C., Odiakosa, A., & Okafor, S. (2019). Research article evaluation of the medicinal properties and possible nutrient composition of Citrullus lanatus (Watermelon) seeds. Res J Med Plant, 13(4), 129-35.
Ferreira, C., & Sarraguça, M. (2024). A comprehensive review on deep eutectic solvents and its use to extract bioactive compounds of pharmaceutical interest. Pharmaceuticals, 17(1), 124.
Gupta, M., Thakur, S., Sharma, A., & Gupta, S. (2013). Qualitative and quantitative analysis of phytochemicals and pharmacological value of some dye yielding medicinal plants. Orient J Chem, 29(2), 475-81.
Hahn, A., Liszka, J., Maksym, J., Nemś, A., & Miedzianka, J. (2025). Preliminary Data of the Nutritive, Antioxidative, and Functional Properties of Watermelon (Citrullus lanatus L.) Flour and Seed Protein Concentrate. Molecules, 30(1), 181.
Harborne, J. B. (1998). Phytochemical methods: a guide to modern techniques of plant analysis. Chapman and Hall.
Haro-González, J. N., Castillo-Herrera, G. A., Martínez-Velázquez, M., & Espinosa-Andrews, H. (2021). Clove essential oil (Syzygiumaromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules, 26(21), 6387.
Hemalatha, R., Nivetha, P., Mohanapriya, C., Sharmila, G., Muthukumaran, C., & Gopinath, M. (2016). Phytochemical composition, GC-MS analysis, in vitro antioxidant and antibacterial potential of clove flower bud (Eugenia caryophyllus) methanolic extract. Journal of food science and technology, 53, 1189-1198.
Hussain, I., Ullah, R., Khurram, M., Ullah, N., Baseer, A., Khan, F. A., ... & Khan, N. (2011). Phytochemical analysis of selected medicinal plants. African Journal of Biotechnology, 10(38), 7487-7492.
Ihemeje, A. (2024), Comparative Assessment of Nutrient and Phytochemical Properties of Melon, Water Melon and Cucumber Seeds. Journal of Food and Nutrition, 3(2).
Jomova, K., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: Antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Archives of Toxicology, 98(5), 1323-1367.
Joshi, V., Nimmakayala, P., Song, Q., Abburi, V., Natarajan, P., Levi, A., ... & Reddy, U. K. (2021). Genome-wide association study and population structure analysis of seed-bound amino acids and total protein in watermelon. PeerJ, 9, e12343.
Karagecili, H., Yılmaz, M. A., Ertürk, A., Kiziltas, H., Güven, L., Alwasel, S. H., & Gulcin, İ. (2023). Comprehensive metabolite profiling of Berdav propolis using LC-MS/MS: Determination of antioxidant, anticholinergic, antiglaucoma, and antidiabetic effects. Molecules, 28(4), 1739.
Khalil, A. A., ur Rahman, U., Khan, M. R., Sahar, A., Mehmood, T., & Khan, M. (2017). Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC advances, 7(52), 32669-32681.
Kolu, P., Olumide, M. D., & Akintunde, A. O. (2021). Potentials of ripe Carica papaya seed meal using different processing methods as alternative feed ingredients in monogastric animal nutrition. Nigerian Journal of Animal Science, 23(3), 177-184.
Kong, Y. R., Jong, Y. X., Balakrishnan, M., Bok, Z. K., Weng, J. K. K., Tay, K. C., ... & Khaw, K. Y. (2021). Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology, 10(4), 287.
Kumar, K., Debnath, P., Singh, S., & Kumar, N. (2023). An overview of plant phenolics and their involvement in abiotic stress tolerance. Stresses, 3(3), 570-585.
Lam, T. P., Tran, N. V. N., Pham, L. H. D., Lai, N. V. T., Dang, B. T. N., Truong, N. L. N., ... & Tran, T. D. (2024). Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. Natural Products and Bioprospecting, 14(1), 4.
Lartey, G. S. T. J., Tachie-Menson, J. W., & Adu, S. (2023). Nutritional composition of cinnamon and clove powder and the evaluation of the antimicrobial properties of their extracts: A comparison between Ghana and other countries. African Journal of Plant Science, 17(2), 11-17.
Lone, Z. A., & Jain, N. K. (2022). Phytochemical analysis of clove (Syzygiumaromaticum) dried flower buds extract and its therapeutic importance. J. Drug Deliv. Ther, 12, 87-92.
Mahla, H. R., Rathore, S. S., Venkatesan, K., & Sharma, R. (2018). Analysis of fatty acid methyl esters and oxidative stability of seed purpose watermelon (Citrullus lanatus) genotypes for edible oil. Journal of Food Science and Technology, 55, 1552-1561.
Maisarah, A. M., Asmah, R., & Fauziah, O. (2014). Proximate analysis, antioxidant and anti-proliferative activities of different parts of Carica papaya. Journal of tissue science & engineering, 5(1), 1.
Manivannan, A., Lee, E. S., Han, K., Lee, H. E., & Kim, D. S. (2020). Versatile nutraceutical potentials of watermelon—A modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules, 25(22), 5258.
Marchese, A., Barbieri, R., Coppo, E., Orhan, I. E., Daglia, M., Nabavi, S. F., ... & Ajami, M. (2017). Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Critical reviews in microbiology, 43(6), 668-689.
Myint, S., Daud, W. R. W., Mohamad, A. B., & Kadhum, A. A. H. (1996). Gas chromatographic determination of eugenol in ethanol extract of cloves. Journal of Chromatography B: Biomedical Sciences and Applications, 679(1-2), 193-195.
Nadeem, M., Navida, M., Ameer, K., Iqbal, A., Malik, F., Nadeem, M. A., ... & Din, A. (2022). A comprehensive review on the watermelon phytochemical profile and their bioactive and therapeutic effects. Food Science and Preservation, 29(4), 546-576.
Nkwonta, C. G., Auma, C. I., & Gong, Y. (2023). Underutilised food crops for improving food security and nutrition health in Nigeria and Uganda—a review. Frontiers in Sustainable Food Systems, 7, 1126020.
Nnaemeka, U. M. (2023). Hypoglycaemic and hypolipidemic effect of different solvents extract of unripe Carica papaya seed in streptozotocin-induced diabetic rats. International Journal of Science and Research Archive, 8(1), 075-082.
Okeniyi, J. A., Ogunlesi, T. A., Oyelami, O. A., & Adeyemi, L. A. (2007). Effectiveness of dried Carica papaya seeds against human intestinal parasitosis: a pilot study. Journal of medicinal food, 10(1), 194-196.
Otunola, G. A. (2022). Culinary spices in food and medicine: an overview of Syzygiumaromaticum (L.) Merr. and LM Perry [Myrtaceae]. Frontiers in Pharmacology, 12, 793200.
Oyeleke, G. O., Olagunju, E. O., & Ojo, A. (2012). Functional and physicochemical properties of watermelon (Citrullus lanatus) seed and seed-oil. Journal of Applied Chemistry, 2(2), 29-31.
Pandey, A. K., Nath, T. K., & Dhara, S. (2025). Effect of reaction temperatures on optical properties of clove buds derived carbon dots for targeting nucleolus. Journal of Industrial and Engineering Chemistry, 141, 441-455.
Pin, C. H., & Daniel, N. (2023). Processing of herbal-based natural products and functional foods: a review. Sains Malaysiana, 52(9), 2587-2598.
Rani, S. S., Vedavijaya, T., Podila, K. S., Md, Z. A., Chinnanolla, S., Sayana, S. B., & Soujanya, S. C. (2024). In Vivo Antioxidant and Nephroprotective Effects of Ethanolic Extract of Carica papaya Seeds and Its Isolated Flavonoid on Gentamicin-Induced Nephrotoxicity in Wistar Albino Rats. Cureus, 16(4).
Sahu, S. S. (2021). Clove as Nutraceuticals. NEW DELHI PUBLISHERS, 165.
Santhi, K., & Sengottuvel, R. (2016). Qualitative and quantitative phytochemical analysis of Moringa concanensis Nimmo. International Journal of Current Microbiology and Applied Sciences, 5(1), 633-640.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
Suliman, M. A. E., Ahmed, F. G., El-Kholy, K. F., Mohamed, R. A. E., & Abdel-Mawla, L. F. (2023). Effects of clove (syzygiumaromaticum) on productive performance, nutrients value and digestibility, blood lipid profile, antioxidant status and immune response of growing rabbits. Online J. Anim. Feed Res, 13(1), 1-9.
Sun, W., & Shahrajabian, M. H. (2023). Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules, 28(4), 1845.
Tabiri, B., Agbenorhevi, J. K., Wireko-Manu, F. D., & Ompouma, E. I. (2016). Watermelon seeds as food: Nutrient composition, phytochemicals and antioxidant activity.International Journal of Nutrition and Food Sciences, 5(2), 139-142.
Timilsena, Y. P., Phosanam, A., & Stockmann, R. (2023). Perspectives on saponins: food functionality and applications. International Journal of Molecular Sciences, 24(17), 13538.
Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93.
Ugbogu, E. A., Dike, E. D., Uche, M. E., Etumnu, L. R., Okoro, B. C., Ugbogu, O. C., ... & Iweala, E. J. (2023). Ethnomedicinal uses, nutritional composition, phytochemistry and potential health benefits of Carica papaya. Pharmacological Research-Modern Chinese Medicine, 7, 100266.
Ullah, M. A., Hassan, A., & Hamza, A. (2023). Role of clove in human medical history. SAR J Anat Physiol, 4(2), 10-19.
Usta, J., Kreydiyyeh, S., Barnabe, P., Bou-Moughlabay, Y., &Nakkash-Chmaisse, H. (2003). Comparative study on the effect of cinnamon and clove extracts and their main components on different types of ATPases. Human & experimental toxicology, 22(7), 355-362.
Vetter, R. E., & Barbosa, A. P. R. (1995). Mangrove Bark: A renewable resin source for wood adhesives. Acta Amazonica, 25(1-2), 69-72.
Vinha, A. F., Costa, A. S., Espírito Santo, L., Ferreira, D. M., Sousa, C., Pinto, E., ... & Oliveira, M. B. P. (2024). High-value compounds in papaya by-products (Carica papaya L. var. Formosa and Aliança): Potential sustainable use and exploitation. Plants, 13(7), 1009.
Vinhas, A. S., Silva, C. S., Matos, C., Moutinho, C., & Ferreira da Vinha, A. (2021). Valorization of watermelon fruit (Citrullus lanatus) byproducts: phytochemical and biofunctional properties with emphasis on recent trends and advances. World Journal of Advance Healthcare Research, 5(1), 302-309.
Vuong, Q. V., Hirun, S., Roach, P. D., Bowyer, M. C., Phillips, P. A., & Scarlett, C. J. (2013). Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. Journal of herbal medicine, 3(3), 104-111.
Xue, Q., Xiang, Z., Wang, S., Cong, Z., Gao, P., & Liu, X. (2022). Recent advances in nutritional composition, phytochemistry, bioactive, and potential applications of Syzygiumaromaticum L. (Myrtaceae). Frontiers in Nutrition, 9, 1002147.
Yanty, N. A. M., Marikkar, J. M. N., Nusantoro, B. P., Long, K., & Ghazali, H. M. (2014). Physico-chemical characteristics of papaya (Carica papaya L.) seed oil of the Hong Kong/Sekaki variety. Journal of Oleo Science, 63(9), 885-892.
Zhou, K., Wang, H., Mei, W., Li, X., Luo, Y., & Dai, H. (2011). Antioxidant activity of papaya seed extracts. Molecules, 16(8), 6179-6192.
PDF